×

Multiscale simulations of primary atomization. (English) Zbl 1245.76148

Summary: A liquid jet upon atomization breaks up into small droplets that are orders of magnitude smaller than its diameter. Direct numerical simulations of atomization are exceedingly expensive computationally. Thus, the need to perform multiscale simulations. In the present study, we performed multiscale simulations of primary atomization using a Volume-of-Fluid (VOF) algorithm coupled with a two-way coupling Lagrangian particle-tracking model to simulate the motion and influence of the smallest droplets. Collisions between two particles are efficiently predicted using a spatial-hashing algorithm. The code is validated by comparing the numerical simulations for the motion of particles in several vortical structures with analytical solutions. We present simulations of the atomization of a liquid jet into droplets which are modeled as particles when away from the primary jet. We also present the probability density function of the droplets thus obtained and show the evolution of the PDF in space.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Gerris; KRAKEN; PROST; SLIC

References:

[3] Fish, J.; Chen, W., Discrete-to-continuum bridging based on multigrid principles, Comput Meth Appl Mech Eng, 193, 1693-1711 (2004) · Zbl 1079.74503
[4] Engquist, W. E.; Engquist, B., The heterogeneous multi-scale methods, Comm Math Sci, 1, 87-132 (2002) · Zbl 1093.35012
[5] Helzel, C.; Otto, F., Multiscale simulations for suspensions of rod-like molecules, J Comput Phys, 216, 52-75 (2006) · Zbl 1107.82040
[6] Hou, T. Y.; Wu, X., A multiscale finite element method for elliptical problems in composite materials and porous media, J Comput Phys, 134, 169-189 (1997) · Zbl 0880.73065
[7] Hughes, T. J.R., Multiscale phenomena; Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of the stabilized methods, Comput Meth Appl Mech Eng, 127, 387-401 (1995) · Zbl 0866.76044
[8] Son, G.; Ramanujapu, N.; Dhir, V. K., Numerical simulation of bubble merger process on a single nucleate site during pool nucleate boiling, J Heat Transfer, 124, 51 (2002)
[9] Chiesa, M.; Mathisen, V.; Melheim, J.; Halvorsen, B., Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to fluidised bed, Comput Chem Eng, 29, 291 (2005)
[10] Elghobashi, S.; Truesdell, G. C., Direct simulation of particle dispersion in a decaying isotropic turbulence, J Fluid Mech, 242, 655-700 (1992)
[11] Ferrante, A.; Elghobashi, S., On the effects of microbubbles on the Taylor-Green vortex flow, J Fluid Mech, 572, 145-177 (2007) · Zbl 1111.76058
[12] van Sint Annaland, M.; Deen, N. G.; Kuipers, J. A.M., Numerical simulation of gas-liquid-solid flows using a combined front tracking and discrete particle method, Chem Eng Sci, 60, 6188-6198 (2005)
[13] Tanaka, T.; Eaton, J. K., Classification of turbulence modification by dispersed sphers using a novel dimensionless number, Phys Rev Lett, 101, 114502 (2008)
[14] Lohse, D., Particles go with the flow, Physics, 18, 1-4 (2008)
[15] Maxey, M. R.; Chang, E. J.; Wang, L. P., Simulations of interactions between microbubbles and turbulent flows, Appl Mech Rev, 47, 70-74 (1994)
[16] Climent, E.; Magnaudet, J., Dynamics of a two-dimensional upflowing mixing layer seeded with bubbles: bubble dispersion and effect of two-way coupling, Phys Fluids, 18, 103304 (2006)
[17] Ishii, E.; Ishikawa, T.; Tanabe, Y., Hybrid particle/grid method for predicting motion of micro- and macro-free surfaces, J Fluids Eng, 128, 921-930 (2006)
[18] Brackbill, J.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335-354 (1992) · Zbl 0775.76110
[19] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 25-37 (1992) · Zbl 0758.76047
[20] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 146-159 (1994) · Zbl 0808.76077
[22] Popinet, S.; Zaleski, S., A front tracking algorithm for the accurate representation of surface tension, Int J Numer Meth Fluids, 30, 775-793 (1999) · Zbl 0940.76047
[24] Renardy, Y.; Renardy, M., PROST - a parabolic reconstruction of surface tension for the volume-of-fluid method, J Comput Phys, 183, 400-421 (2002) · Zbl 1057.76569
[25] Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S., Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res, 41, 6, 065001 (2009) · Zbl 1423.76002
[27] Tauber, W.; Tryggvason, G., Direct numerical simulation of primary breakup, Comput Fluid Dyn J, 9, 594 (2000)
[29] Herrmann, M., A parallel eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure, J Comput Phys, 229, 3, 745-759 (2010) · Zbl 1253.76126
[30] Ménard, T.; Tanguy, S.; Berlemont, A., Coupling level set/vof/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, Int J Multiphase Flow, 33, 5, 510-524 (2007)
[32] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J Comput Phys, 190, 572-600 (2003) · Zbl 1076.76002
[33] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J Comput Phys, 228, 5838-5868 (2009) · Zbl 1280.76020
[34] Kataoka, I., Local instant formulation of two-phase flow, Int J Multiphase Flow, 12, 5, 745-758 (1986) · Zbl 0613.76114
[35] Magnaudet, J.; Eames, I., The motion of high-Reynolds-number bubbles in inhomogeneous flows, Ann Rev Fluid Mech, 32, 659-708 (2000) · Zbl 0989.76082
[36] Legendre, D.; Magnaudet, J., The lift force on a spherical bubble in a viscous linear shear flow, J Fluid Mech, 368, 81-216 (1998) · Zbl 0927.76020
[37] Magnaudet, J.; Rivero, M.; Fabre, J., Accelerated flows around a rigid sphere or a spherical bubble. Part I: Steady straining flow, J Fluid Mech, 284, 97-136 (1995) · Zbl 0848.76063
[38] Auton, T. R., The lift force on a spherical body in a rotational flow, J Fluid Mech, 183, 199-218 (1987) · Zbl 0634.76021
[39] Fuster, D.; Bague, A.; Boeck, T.; Moyne, L.; Leboissetier, A.; Popinet, S., Simulation of primary atomization with an octree adaptative mesh refinement and vof method, Int J Multiphase Flow, 35, 550-565 (2009)
[40] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J Comput Phys, 2, 12-26 (1967) · Zbl 0149.44802
[41] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible Navier-Stokes equations, J Comput Phys, 85, 257-283 (1989) · Zbl 0681.76030
[42] Almgren, A.; Bell, J.; Crutchfield, W., Approximate projection methods: Part I. Inviscid analysis, SIAM J Sci Comput, 22, 1139-1159 (2000) · Zbl 0995.76059
[45] Li, J., Calcul d’interface affine par morceaux (piecewise linear interface calculation), C R Acad Sci Paris série IIb (Paris), 320, 391-396 (1995) · Zbl 0826.76065
[46] Puckett, E. G.; Almgren, A. S.; Bell, J. B.; Marcus, D. L.; Rider, W. J., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J Comput Phys, 130, 269-282 (1997) · Zbl 0872.76065
[47] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J Comput Phys, 225, 2301-2319 (2007) · Zbl 1118.76048
[48] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J Comput Phys, 213, 141-173 (2006) · Zbl 1137.76465
[50] Batchelor, G. K., An introduction to fluid dynamics (1970), Cambridge Univ. Press · Zbl 0152.44402
[51] Landau, L. D., A new exact solution of Navier-Stokes equations, C R (Doklady) Acad Sci URSS, 43, 286-288 (1944) · Zbl 0061.43410
[52] Caballina, O.; Climent, E.; Dusek, J., Two-way coupling simulations of instabilities in a plane bubble plume, Phys Fluids, 15, 1535 (2003) · Zbl 1186.76085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.