×

High-order sliding mode-based synchronisation of fractional-order chaotic systems subject to output delay and unknown disturbance. (English) Zbl 1504.93331

Summary: This work deals with chaos synchronisation. One of the commonly used methods is the master-slave configuration, where the response of the chaotic receiver (slave) system must converge to the chaotic trajectory of the transmitter (master). The major problem with this configuration is the delay that occurs during the transmission of the drive signal from the master to the slave, which can degrade the synchronisation. The objective of this paper is to propose a solution to the synchronisation problem of nonlinear fractional-order chaotic systems in the presence of a transmission delay at the output and unknown disturbance. The proposed approach consists of combining a fractional high-order sliding mode observer (FHOSMO) and a predictor arranged in a cascade to compensate for the delayed transmission signal from the transmitter to the receiver. The observer permits to estimate the delayed states and the delayed total disturbance (uncertainties and external disturbances) in finite time. These estimates are injected into the predictor to obtain the estimated states at the current time. The finite time convergence of the proposed method is established. The numerical simulations illustrate the theoretical results and the performance of the proposed method. The proposed synchronisation method is compared with other synchronisation methods using the chattering free sliding mode approach such as the fractional first-order sliding mode observer using the continuous function instead of the discontinuous sign function and the fractional second-order sliding mode observer. In addition, a conventional first-order sliding mode observer with the sign function is also considered.

MSC:

93D40 Finite-time stability
93B12 Variable structure systems
93B52 Feedback control
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Ahmad, W. M.; Sprott, J. C., Chaos in fractional-order autonomous nonlinear systems, Chaos, Solitons & Fractals, 16, 2, 339-351 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[2] Almatroud, A. O., Synchronisation of two different uncertain fractional-order chaotic systems with unknown parameters using a modified adaptive sliding-mode controller, Advances in Difference Equations, 2020, 1, 1-14 (2020) · Zbl 1482.34145 · doi:10.1186/s13662-020-02548-6
[3] Al-Saggaf, U. M.; Bettayeb, M.; Djennoune, S., Super-twisting algorithm-based sliding-mode observer for synchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs, Arabian Journal for Science and Engineering, 42, 7, 3065-3075 (2017) · Zbl 1390.34194 · doi:10.1007/s13369-017-2548-5
[4] Alvarez, G.; Li, S., Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos, 16, 8, 2129-2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[5] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20, 2, 763-769 (2016) · doi:10.2298/TSCI160111018A
[6] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with atangana-baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89, 273, 447-454 (2016) · Zbl 1360.34150 · doi:10.1016/j.chaos.2016.02.012
[7] Balamash, A. S.; Bettayeb, M.; Djennoune, S.; Al-Saggaf, U. M.; Moinuddin, M., Fixed-time terminal synergetic observer for synchronization of fractional-order chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30, 7 (2020) · Zbl 1445.34010 · doi:10.1063/1.5142989
[8] Behinfaraz, R.; Ghaemi, S.; Khanmohammadi, S., Adaptive synchronization of new fractional-order chaotic systems with fractional adaption laws based on risk analysis, Mathematical Methods in the Applied Sciences, 42, 6, 1772-1785 (2019) · Zbl 1417.93165 · doi:10.1002/mma.v42.6
[9] Belkhatir, Z.; Laleg-Kirati, T. M., High-order sliding mode observer for fractional commensurate linear systems with unknown input, Automatica, 82, 3, 209-217 (2017) · Zbl 1372.93053 · doi:10.1016/j.automatica.2017.04.035
[10] Bettayeb, M.; Al-Saggaf, U. M.; Djennoune, S., High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronisation of fractional-order chaotic systems, IET Control Theory & Applications, 11, 17, 3171-3178 (2017) · doi:10.1049/cth2.v11.17
[11] Bouridah, M. S.; Bouden, T.; Yalçin, M. E., Delayed outputs fractional-order hyperchaotic systems synchronization for images encryption, Multimedia Tools and Applications, 80, 10, 14723-14752 (2021) · doi:10.1007/s11042-020-10425-3
[12] Buba, Z. P.; Wajiga, G. M., Cryptographic algorithms for secure data communication, International Journal of Computer Science and Security (IJCSS), 5, 2, 227-243 (2011)
[13] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 1, 2, 1-13 (2015)
[14] Chatibi, Y.; Kinani, E. E.; Ouhadan, A., Variational calculus involving nonlocal fractional derivative with mittag-leffler kernel, Chaos, Solitons & Fractals, 118, 3, 117-121 (2019) · Zbl 1442.49026 · doi:10.1016/j.chaos.2018.11.017
[15] Chatibi, Y.; Kinani, E. H. E.; Ouhadan, A., Lie symmetry analysis and conservation laws for the time fractional black-scholes equation, International Journal of Geometric Methods in Modern Physics, 17, 1 (2019) · Zbl 07806154 · doi:10.1142/S0219887820500103
[16] Chatibi, Y.; Kinani, E. H. E.; Ouhadan, A., On the discrete symmetry analysis of some classical and fractional differential equations, Mathematical Methods in the Applied Sciences, 44, 4, 2868-2878 (2019) · Zbl 1469.76081 · doi:10.1002/mma.v44.4
[17] Chatibi, Y.; Kinani, E. H. E.; Ouhadan, A. O., Lie symmetry analysis of conformable differential equations, AIMS Mathematics, 4, 4, 1133-1144 (2019) · Zbl 1484.34097 · doi:10.3934/math.2019.4.1133
[18] Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., & Smith-Tone, D. (2016). Report on post-quantum cryptography, Vol. 12. US Department of Commerce, National Institute of Standards and Technology. · Zbl 0714.65036
[19] Dadras, S.; Momeni, H. R., Adaptive sliding mode control of chaotic dynamical systems with application to synchronization, Mathematics and Computers in Simulation, 80, 12, 2245-2257 (2010) · Zbl 1203.65279 · doi:10.1016/j.matcom.2010.04.005
[20] Dadras, S., & Momeni, H. R. (2011). Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems. In IEEE Conference on Decision and Control and European Control Conference. IEEE.
[21] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, 50, 11, 1785-1789 (2005) · Zbl 1365.93071 · doi:10.1109/TAC.2005.858636
[22] Diethelm, K., The analysis of fractional differential equations (2010), Springer Berlin Heidelberg · Zbl 1215.34001
[23] Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M., Why fractional derivatives with nonsingular kernels should not be used, Fractional Calculus and Applied Analysis, 23, 3, 610-634 (2020) · Zbl 1474.26020 · doi:10.1515/fca-2020-0032
[24] Dimassi, H.; Loria, A.; Belghith, S., Adaptive observers-based synchronization of a class of lur’e systems with delayed outputs for chaotic communications, IFAC Proceedings Volumes, 45, 12, 255-260 (2012) · doi:10.3182/20120620-3-MX-3012.00015
[25] Djeghali, N.; Bettayeb, M.; Djennoune, S., Sliding mode active disturbance rejection control for uncertain nonlinear fractional-order systems, European Journal of Control, 57, 3, 54-67 (2021) · Zbl 1455.93018 · doi:10.1016/j.ejcon.2020.03.008
[26] Djeghali, N.; Djennoune, S.; Bettayeb, M.; Ghanes, M.; Barbot, J.-P., Observation and sliding mode observer for nonlinear fractional-order system with unknown input, ISA Transactions, 63, 5, 1-10 (2016) · doi:10.1016/j.isatra.2016.02.015
[27] Doye, I. N.; Salama, K. N.; Laleg-Kirati, T. -M., Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems, IEEE/CAA Journal of Automatica Sinica, 6, 1, 268-277 (2019) · doi:10.1109/JAS.2017.7510874
[28] Edwards, C.; Spurgeon, S. K.; Patton, R. J., Sliding mode observers for fault detection and isolation, Automatica, 36, 4, 541-553 (2000) · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[29] Faieghi, M. R.; Delavari, H., Chaos in fractional-order genesio-tesi system and its synchronization, Communications in Nonlinear Science and Numerical Simulation, 17, 2, 731-741 (2012) · Zbl 1239.93020 · doi:10.1016/j.cnsns.2011.05.038
[30] Fanaee, N., Adaptive finite time high-order sliding mode observer for non-linear fractional-order systems with unknown input, Asian Journal of Control, 23, 2, 1083-1096 (2020) · Zbl 07878872 · doi:10.1002/asjc.2308
[31] Feng, Y., Zheng, J., & Sun, L. (2006). Chaos synchronization based on sliding mode observer. In 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics (p. 6). IEEE.
[32] Floquet, T.; Barbot, J.-P., Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs, International Journal of Systems Science, 38, 10, 803-815 (2007) · Zbl 1128.93311 · doi:10.1080/00207720701409330
[33] Fridman, L.; Levant, A.; Davila, J., Observation of linear systems with unknown inputs via high-order sliding-modes, International Journal of Systems Science, 38, 10, 773-791 (2007) · Zbl 1128.93312 · doi:10.1080/00207720701409538
[34] Fridman, L.; Shtessel, Y.; Edwards, C.; Yan, X.-G., Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems, International Journal of Robust and Nonlinear Control, 18, 4-5, 399-412 (2008) · Zbl 1284.93057 · doi:10.1002/(ISSN)1099-1239
[35] Goufo, E. D.; Atangana, A., Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, The European Physical Journal Plus, 131, 8, 1-15 (2016) · doi:10.1140/epjp/i2016-16269-1
[36] Goufo, E. F. D., Application of the caputo-fabrizio fractional derivative without singular kernel to korteweg-de vries-burgers equation*, Mathematical Modelling and Analysis, 21, 2, 188-198 (2016) · Zbl 1499.35643 · doi:10.3846/13926292.2016.1145607
[37] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional lorenz system, Physical Review Letters, 91, 3, 529 (2003) · doi:10.1103/PhysRevLett.91.034101
[38] Hafezi, A.; Khandani, K.; Majd, V. J., Non-fragile exponential polynomial observer design for a class of nonlinear fractional-order systems with application in chaotic communication and synchronisation, International Journal of Systems Science, 51, 8, 1353-1372 (2020) · Zbl 1483.93216 · doi:10.1080/00207721.2020.1758231
[39] Hamoudi, A.; Djeghali, N.; Bettayeb, M., Predictor-based super-twisting sliding mode observer for synchronisation of nonlinear chaotic systems with delayed measurements, International Journal of Systems Science, 51, 15, 3013-3029 (2020) · Zbl 1483.93057 · doi:10.1080/00207721.2020.1806371
[40] Hartley, T. T.; Lorenzo, C. F., Dynamics and control of initialized fractional-order systems, Nonlinear Dynamics, 29, 1-4, 201-233 (2002) · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[41] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K., Chaos in a fractional order chua’s system, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42, 8, 485-490 (1995) · doi:10.1109/81.404062
[42] Khalil, R.; Horani, M. A.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[43] Kharabian, B.; Mirinejad, H., Synchronization of rossler chaotic systems via hybrid adaptive backstepping/sliding mode control, Results in Control and Optimization, 4, 8 (2021) · doi:10.1016/j.rico.2021.100020
[44] Khosravian, A.; Trumpf, J.; Mahony, R. E., IEEE-CDC, State estimation for nonlinear systems with delayed output measurements, 6330-6335 (2015), IEEE
[45] Kilbas, A. (2006). Theory and applications of fractional differential equations. · Zbl 1092.45003
[46] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263 (1993) · Zbl 0789.93063 · doi:10.1080/00207179308923053
[47] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, 76, 9-10, 924-941 (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[48] Liu, S.; Wu, X.; Zhou, X.-F.; Jiang, W., Asymptotical stability of riemann-liouville fractional nonlinear systems, Nonlinear Dynamics, 86, 1, 65-71 (2016) · Zbl 1349.34013 · doi:10.1007/s11071-016-2872-4
[49] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 2, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[50] Loría, A.; Panteley, E.; Zavala-Río, A., Adaptive observers with persistency of excitation for synchronization of chaotic systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 12, 2703-2716 (2009) · Zbl 1468.93098 · doi:10.1109/TCSI.2009.2016636
[51] Lu, J. G., Chaotic dynamics and synchronization of fractional-order arneodo’s systems, Chaos, Solitons & Fractals, 26, 4, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[52] Mofid, O.; Mobayen, S.; Khooban, M.-H., Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional-order chaotic systems, International Journal of Adaptive Control and Signal Processing, 33, 3, 462-474 (2018) · Zbl 1417.93102 · doi:10.1002/acs.2965
[53] Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu-Batlle, V., Fractional-order systems and controls: fundamentals and applications (2010), Springer Science & Business Media · Zbl 1211.93002
[54] Mozaffari, S.; Sameti, M.; Soudack, A., Effect of initial conditions on chaotic ferroresonance in power transformers, IEE Proceedings-Generation, Transmission and Distribution, 144, 5, 456-460 (1997) · doi:10.1049/ip-gtd:19971459
[55] Murguia, C.; Fey, R. H.; Nijmeijer, H., Immersion and invariance observers with time-delayed output measurements, Communications in Nonlinear Science and Numerical Simulation, 30, 1-3, 227-235 (2016) · Zbl 1448.81052 · doi:10.1016/j.cnsns.2015.06.005
[56] Nijmeijer, H.; Mareels, I. M., An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44, 10, 882-890 (1997) · doi:10.1109/81.633877
[57] Noghredani, N.; Balochian, S., Synchronization of fractional-order uncertain chaotic systems with input nonlinearity, International Journal of General Systems, 44, 4, 485-498 (2014) · Zbl 1319.93017 · doi:10.1080/03081079.2014.976217
[58] Nourian, A.; Balochian, S., The adaptive synchronization of fractional-order liu chaotic system with unknown parameters, Pramana, 86, 6, 1401-1407 (2016) · doi:10.1007/s12043-015-1178-2
[59] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[60] Petráš, I., Fractional-order nonlinear systems: modeling, analysis and simulation (2011), Springer Science & Business Media · Zbl 1228.34002
[61] Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), Elsevier
[62] Podlubny, I. (2001). Geometric and physical interpretation of fractional integration and fractional differentiation. arXiv preprint math/0110241.
[63] Qi, W.; Gao, X.; Ahn, C. K.; Cao, J.; Cheng, J., Fuzzy integral sliding-mode control for nonlinear semi-markovian switching systems with application, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 3, 1-10 (2020) · doi:10.1109/tsmc.2020.3034484
[64] Qi, W.; Zong, G.; Zheng, W. X., Adaptive event-triggered SMC for stochastic switching systems with semi-markov process and application to boost converter circuit model, IEEE Transactions on Circuits and Systems I: Regular Papers, 68, 2, 786-796 (2021) · doi:10.1109/TCSI.8919
[65] Rashidnejad, Z.; Karimaghaee, P., Synchronization of a class of uncertain chaotic systems utilizing a new finite-time fractional adaptive sliding mode control, Chaos, Solitons & Fractals: X, 5, 2 (2020) · doi:10.1016/j.csfx.2020.100042
[66] Rodríguez, A.; León, J. D.; Fridman, L., Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer, Chaos, Solitons & Fractals, 42, 5, 3219-3233 (2009) · Zbl 1198.93184 · doi:10.1016/j.chaos.2009.04.055
[67] Sabaghian, A.; Balochian, S.; Yaghoobi, M., Synchronisation of 6d hyper-chaotic system with unknown parameters in the presence of disturbance and parametric uncertainty with unknown bounds, Connection Science, 32, 4, 362-383 (2020) · doi:10.1080/09540091.2020.1723491
[68] Sabatier, J. A. T. M. J.; Agrawal, O. P.; Machado, J. T., Advances in fractional calculus: Theoretical develop-ments and applications in physics and engineering (2007), Springer · Zbl 1116.00014
[69] Schuster, H. G.; Just, W., Deterministic chaos: An introduction (2006), John Wiley & Sons
[70] Shao, S.; Chen, M.; Yan, X., Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance, Nonlinear Dynamics, 83, 4, 1855-1866 (2015) · Zbl 1353.93064 · doi:10.1007/s11071-015-2450-1
[71] Shukla, M. K.; Sharma, B., Control and synchronization of a class of uncertain fractional order chaotic systems via adaptive backstepping control, Asian Journal of Control, 20, 2, 707-720 (2017) · Zbl 1390.93454 · doi:10.1002/asjc.v20.2
[72] Sun, H. G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Communications in Nonlinear Science and Numerical Simulation, 64, 48103, 213-231 (2018) · Zbl 1509.26005 · doi:10.1016/j.cnsns.2018.04.019
[73] Targui, B.; Hernández-González, O.; Astorga-Zaragoza, C.-M.; Guerrero-Sánchez, M. E., Chain observer for lipschitz non-linear systems with long time-varying delayed measurements, IET Control Theory & Applications, 12, 10, 1431-1439 (2018) · doi:10.1049/cth2.v12.10
[74] Utkin, V. I. (1992). Stability of sliding modes. In Sliding Modes in Control and Optimization (pp. 44-65). Springer Berlin Heidelberg. · Zbl 0748.93044
[75] Vaidyanathan, S., Global chaos synchronization of the forced van der pol chaotic oscillators via adaptive control method, International Journal of PharmTech Research, 8, 6, 156-166 (2015)
[76] Xu, J.; Li, N.; Zhang, X.; Qin, X., Fuzzy synchronization control for fractional-order chaotic systems with different structures, Frontiers in Physics, 8, 155 (2020) · doi:10.3389/fphy.2020.00155
[77] Ye, Q.; Jiang, Z.; Chen, T., Adaptive feedback control for synchronization of chaotic neural systems with parameter mismatches, Complexity, 2018, 1-8 (2018) · Zbl 1405.93141 · doi:10.1155/2018/5431987
[78] Zhang, H.; Meng, D.; Wang, J.; Lu, G., Synchronisation of uncertain chaotic systems via fuzzy-regulated adaptive optimal control approach, International Journal of Systems Science, 51, 3, 473-487 (2020) · Zbl 1483.93517 · doi:10.1080/00207721.2020.1716104
[79] Zhang, R.; Gong, J., Synchronization of the fractional-order chaotic system via adaptive observer, Systems Science & Control Engineering, 2, 1, 751-754 (2014) · doi:10.1080/21642583.2014.891955
[80] Zhao, D.; Luo, M., General conformable fractional derivative and its physical interpretation, Calcolo, 54, 3, 903-917 (2017) · Zbl 1375.26020 · doi:10.1007/s10092-017-0213-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.