×

Lie symmetry analysis of conformable differential equations. (English) Zbl 1484.34097

Summary: In this paper, we construct a proper extension of the classical prolongation formula of point transformations for conformable derivative. This technique is illustrated and employed to construct a symmetry group admitted by a conformable ordinary and partial differential equations. Using Lie symmetry analysis, we obtain an exact solution of the conformable heat equation.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
34A08 Fractional ordinary differential equations
35A30 Geometric theory, characteristics, transformations in context of PDEs
35R11 Fractional partial differential equations

References:

[1] S. G. Samko, A. A. Kilbas and O. I. Marichev, <em>Fractional Integrals and Derivatives: Theory and Applications</em>
[2] M. Dalir and M. Bashour, em>Applications of fractional calculus</em, Appl. Math. Sci., 4, 1021-1032 (2010) · Zbl 1195.26011
[3] R. Hilfer, <em>Applications of Fractional Calculus in Physics</em>
[4] I. Podlubny, <em>Fractional Differential Equations</em>, New
[5] R. Khalil; M. A. Horani; A. Yousef, t al. <em>A new definition of fractional derivative</em, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[6] T. Abdeljawad, em>On conformable fractional calculus</em, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[7] D. Zhao and M. Luo, em>General conformable fractional derivative and its physical interpretation</em, Calcolo, 54, 903-917 (2017) · Zbl 1375.26020 · doi:10.1007/s10092-017-0213-8
[8] J. H. He, em>Homotopy perturbation method: A new nonlinear analytical technique</em, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[9] F. Tchier; M. Inc and A. Yusuf, em>Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems</em, Eur. Phys. J. Plus, 134, 1-18 (2019) · doi:10.1140/epjp/i2019-12286-x
[10] A. Yusuf; M. Inc and M. Bayram, em>Soliton solutions for Kudryashov-Sinelshchikov equation</em, Sigma J. Eng. Nat. Sci., 37, 439-444 (2019)
[11] M. Inc; A. Yusuf; A. I. Aliyu, t al. <em>Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law nonlinearity</em, Optik, 162, 65-75 (2018) · doi:10.1016/j.ijleo.2018.02.085
[12] M. Inc; A. Yusuf; A. I. Aliyu, t al. <em>Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation</em, Opt. Quant. Electron., 50, 1-16 (2018) · doi:10.1007/s11082-017-1266-2
[13] A. Akgül, em>Reproducing kernel method for fractional derivative with non-local and non-singular kernel</em, In: Fractional Derivatives with Mittag-Leffler Kernel, Series of Studies in Systems, Decision and Control, Springer, Cham, 194, 1-12 (2019) · Zbl 1446.34006
[14] A. Akgül, em>A novel method for a fractional derivative with non-local and non-singular kernel</em, Chaos Soliton Fractals, 114, 478-482 (2018) · Zbl 1415.34007 · doi:10.1016/j.chaos.2018.07.032
[15] M. G. Sakar, O. Saldir and A. Akgül, <em>A Novel Technique for Fractional Bagley-Torvik Equation</em>, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., (2018), 1-7.
[16] M. Modanli and A. Akgül, em>Numerical solution of fractional telegraph differential equations by theta-method</em, Eur. Phys. J. Spec. Top., 226, 3693-3703 (2017) · doi:10.1140/epjst/e2018-00088-6
[17] E. K. Akgül, em>Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives</em, Chaos, 29 (2019) · Zbl 1409.34006
[18] E. K. Akgül; B. Orcan and A. Akgül, em>Solving higher-order fractional differential equations by reproducing kernel Hilbert space method</em, J. Adv. Phys., 7, 98-102 (2018) · doi:10.1166/jap.2018.1392
[19] N. H. Ibragimov, <em>CRC Handbook of Lie Group Analysis of Differential Equations, Volume
[20] N. H. Ibragimov, <em>Elementary Lie Group Analysis and Ordinary Differential Equations</em>, Wiley, Chichester, 1999. · Zbl 1047.34001
[21] P. J. Olver, <em>Application of Lie Groups to Differential Equation</em>, Springer, 1986. · Zbl 0588.22001
[22] G. W. Bluman and S. Kumei, <em>Symmetries and Differential Equations</em>, Cambridge Texts in Applied Mathematics, Springer, 1989. · Zbl 0698.35001
[23] R. K. Gazizov; A. A. Kasatkin and S. Y. Lukashchuk, em>Continuous transformation groups of fractional differential equations</em, Vestnik USATU, 9, 125-135 (2007)
[24] E. H. El Kinani and A. Ouhadan, em>Exact solutions of time fractional Kolmogorov equation by using Lie symmetry analysis</em, J. Fract. Calc. Appl., 5, 97-104 (2014) · Zbl 1488.34003
[25] A. Ouhadan and E. H. El Kinani, em>Lie symmetry analysis of some time fractional partial differential equations</em, Int. J. Mod. Phys. Conf. Ser., 38 (2015)
[26] T. Bakkyaraj and R. Sahadevan, em>Group formalism of Lie transformations to time-fractional partial differential equations</em, Pramana J. Phys., 85, 849-860 (2015) · doi:10.1007/s12043-015-1103-8
[27] T. Bakkyaraj and R. Sahadevan, em>Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative</em, Nonlinear Dyn., 80, 447-455 (2015) · Zbl 1345.34003 · doi:10.1007/s11071-014-1881-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.