×

CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics. (English) Zbl 07894914

Summary: This paper proposes a Crank-Nicolson alternating direction implicit (CN-ADI) finite difference scheme for solving the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamic for the first time. Due to the weakly singular behavior of the exact solution near the initial time \(t = 0\), we use the non-uniform meshes to capture the rapid change of the solution at \(t = 0\). The Crank-Nicolson method and product-integration (PI) rule are proposed to approximate temporal derivative and the Riemann-Liouville (R-L) fractional integral term, respectively. The fully discrete scheme is obtained by the standard central finite difference method (FDM) in space. The stability in \(L^2\)-norm and convergence of the CN-ADI difference scheme are strictly proved, where the convergence reached \(\mathcal{O}( \tau^2 + h_x^2 + h_y^2 + h_z^2)\). The ADI algorithm greatly reduces the computational cost of the three-dimensional problems in viscoelastic dynamics. At last, the results of numerical examples verify the correctness of the theoretical analysis and prove the effectiveness of the proposed method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations, 1999, Academic Press: Academic Press San Diego · Zbl 0918.34010
[2] McLean, W.; Thomee, V., Numerical solution of an evolution equation with a positive-type memory term, ANZIAM J., 35, 1, 23-70, 1993 · Zbl 0791.65105
[3] McLean, W.; Mustapha, K., A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105, 481-510, 2007 · Zbl 1111.65113
[4] (Hilfer, R., Applications of Fractional Calculus in Physics, 2000, World Scientific) · Zbl 0998.26002
[5] Hannsgen, K.; Wheeler, R., Uniform \(l^1\) behavior in classes of integrodifferential equations with completely monotonic kernels, SIAM J. Math. Anal., 15, 3, 579-594, 1984 · Zbl 0539.45008
[6] Chang, A.; Sun, H.; Zhang, Y.; Zheng, C.; Min, F., Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs, Phys. A, Stat. Mech. Appl., 519, 119-126, 2019 · Zbl 1514.76086
[7] Xu, H.; Jiang, X., Creep constitutive models for viscoelastic materials based on fractional derivatives, Comput. Math. Appl., 73, 6, 1377-1384, 2017 · Zbl 1458.74027
[8] Liu, L.; Liu, F., Boundary layer flow of fractional Maxwell fluid over a stretching sheet with variable thickness, Appl. Math. Lett., 79, 92-99, 2018 · Zbl 1460.76028
[9] Liu, L.; Feng, L.; Xu, Q.; Liu, F., Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass Transf., 116, Article 104679 pp., 2020
[10] Jiang, X.; Zhang, H.; Wang, S., Unsteady magnetohydrodynamic flow of generalized second grade fluid through porous medium with Hall effects on heat and mass transfer, Phys. Fluids, 32, 11, Article 113105 pp., 2020
[11] Zhang, M.; Shen, M.; Liu, F.; Zhang, H., A new time and spatial fractional heat conduction model for Maxwell nanofluid in porous medium, Comput. Math. Appl., 78, 5, 1621-1636, 2019 · Zbl 1442.76012
[12] Rasheed, A.; Anwar, M. S., Simulations of variable concentration aspects in a fractional nonlinear viscoelastic fluid flow, Commun. Nonlinear Sci. Numer. Simul., 65, 216-230, 2018 · Zbl 1508.76011
[13] Souplet, P., Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29, 6, 1301-1334, 1998 · Zbl 0909.35073
[14] De Masi, A.; Gobron, T.; Presutti, E., Travelling fronts in non-local evolution equations, Arch. Ration. Mech. Anal., 132, 143-205, 1995 · Zbl 0847.45008
[15] Bates, P. W.; Zhao, G., Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332, 1, 428-440, 2007 · Zbl 1114.35017
[16] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl., 90, 2, 201-227, 2008 · Zbl 1165.35322
[17] Chen, P.; Li, Y.; Yang, H., Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., 8, 22-30, 2013 · Zbl 1257.93034
[18] Wang, J.; Jiang, X.; Yang, X.; Zhang, H., A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers’ type nonlinearity, J. Appl. Math. Comput., 1-23, 2024
[19] Zhang, H.; Liu, Y.; Yang, X., An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69, 1, 651-674, 2023 · Zbl 1515.65338
[20] Zhou, Z.; Zhang, H.; Yang, X., \( H^1\)-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algorithms, 1-19, 2023
[21] Li, J., Optimal convergence analysis of mixed finite element methods for fourth-order elliptic and parabolic problems, Numer. Methods Partial Differ. Equ., 22, 4, 884-896, 2006 · Zbl 1106.65081
[22] Qiao, L.; Xu, D., BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels, Comput. Math. Appl., 78, 12, 3807-3820, 2019 · Zbl 1443.65250
[23] Chen, H.; Lu, S.; Chen, W., Spectral methods for the time fractional diffusion-wave equation in a semi infinite channel, Comput. Math. Appl., 71, 9, 1818-1830, 2016 · Zbl 1443.65239
[24] Yang, X.; Zhang, Z., On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150, Article 108972 pp., 2024 · Zbl 1534.65163
[25] Yang, X.; Zhang, H.; Zhang, Q.; Yuan, G., Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108, 4, 3859-3886, 2022 · Zbl 1519.65030
[26] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438, 2015 · Zbl 1349.65261
[27] Wang, Y.; Liu, F.; Mei, L.; Anh, V., A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions, Numer. Algorithms, 86, 1443-1474, 2021 · Zbl 1471.65166
[28] Alikhanov, A. A.; Huang, C., A high-order L2 type difference scheme for the time-fractional diffusion equation, Appl. Math. Comput., 411, Article 126545 pp., 2021 · Zbl 1510.65184
[29] Alikhanov, A. A.; Apekov, A.; Huang, C., A high-order difference scheme for the diffusion equation of multi-term and distributed orders, Math. Appl. New Comput. Syst., 424, 515-523, 2022 · Zbl 07705587
[30] Wang, Z.; Cen, D.; Mo, Y., Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels, Appl. Numer. Math., 159, 190-203, 2021 · Zbl 1459.65160
[31] Qiao, L.; Xu, D., A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation, Adv. Comput. Math., 47, 5, 64, 2021 · Zbl 1496.65184
[32] Liu, Y.; Yin, X.; Liu, F.; Xin, X.; Shen, Y.; Feng, L., An alternating direction implicit Legendre spectral method for simulating a 2D multi-term time-fractional Oldroyd-B fluid type diffusion equation, Comput. Math. Appl., 113, 160-173, 2022 · Zbl 1504.65224
[33] Qiao, L.; Qiu, W.; Xu, D., Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions, Math. Comput. Simul., 205, 205-231, 2023 · Zbl 1540.65320
[34] Sun, H.; Sun, Z., A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation, Numer. Algorithms, 86, 761-797, 2021 · Zbl 1461.65231
[35] Wang, Y.; Chen, H.; Sun, T., α-robust H1-norm convergence analysis of ADI scheme for two-dimensional time-fractional diffusion equation, Appl. Numer. Math., 168, 75-83, 2021 · Zbl 1486.65133
[36] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 3, 650-678, 2017 · Zbl 1488.65247
[37] Yan, Y.; Sun, Z. Z.; Zhang, J., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys., 22, 4, 1028-1048, 2017 · Zbl 1488.65306
[38] Qiao, L.; Qiu, W.; Xu, D., A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem, Comput. Math. Appl., 102, 137-145, 2021 · Zbl 1524.65386
[39] Chen, H.; Xu, D.; Cao, J.; Zhou, J., A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation, Int. J. Comput. Math., 97, 5, 1100-1117, 2020 · Zbl 1480.65207
[40] Lopez-Marcos, J. C., A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27, 1, 20-31, 1990 · Zbl 0693.65097
[41] Sun, Z., Numerical Methods for Partial Differential Equation, 2005, Science Press: Science Press Beijing, (in Chinese)
[42] Sun, Z., The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, 2009, Science Press: Science Press Beijing
[43] Zhang, Y.; Sun, Z.; Wu, H., Error estimates of Crank-Nicolson type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49, 6, 2302-2322, 2011 · Zbl 1251.65132
[44] Sloan, I. H.; Thomee, V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23, 5, 1052-1061, 1986 · Zbl 0608.65096
[45] Dehghan, M., Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math., 83, 1, 123-129, 2006 · Zbl 1087.65119
[46] Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11, 4, 309-319, 1993 · Zbl 0768.65093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.