×

Boundary layer flow of fractional Maxwell fluid over a stretching sheet with variable thickness. (English) Zbl 1460.76028

Summary: A novel investigation about the boundary layer flow of fractional Maxwell fluid over a stretching sheet with variable thickness is presented. By introducing new variables, the irregular boundary changes as a regular one. Solutions of the governing equations are obtained numerically where the L1-scheme is applied. Dynamic characteristics with the effects of different parameters are shown by graphical illustrations. Three kinds of distributions versus power law parameter are presented, including monotonically increasing in nearly linear form at \(y =1\), increasing at first and then decreasing at \(y =1.4\) and monotonically decreasing in nearly linear form at \(y =2\).

MSC:

76A10 Viscoelastic fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M20 Finite difference methods applied to problems in fluid mechanics
26A33 Fractional derivatives and integrals

References:

[1] Altan, T.; Oh, S.; Gegel, H., Metal Forming Fundamentals and Applications (1979), American society for metals: American society for metals Ohio
[2] Fisherl, E., Extrusion of Plastics (1976), Wiley: Wiley New York
[3] Karwe, M.; Jaluria, Y., Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing, ASME J. Heat Transf., 113, 612-619 (1991)
[4] Han, S. H.; Zheng, L. C.; Li, C. R.; Zhang, X. X., Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett., 38, 87-93 (2014) · Zbl 1314.76009
[5] Li, J.; Liu, L.; Zheng, L. C.; Bin-Mohsin, B., Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresis, J. Taiwan Inst. Chem. Eng., 67, 226-234 (2016)
[6] Xenos, M.; Pop, I., Radiation effect on the turbulent compressible boundary layer flow with adverse pressure gradient, Appl. Math. Comput., 299, 153-164 (2017) · Zbl 1411.76039
[7] Hayat, T.; Muhammad, K.; Farooq, M.; Alsaedi, A., Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface, AIP Adv., 6, 015214 (2016)
[8] Fang, T. G.; Zhang, J.; Zhong, Y. F., Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput., 218, 7241-7252 (2012) · Zbl 1426.76124
[9] Abdel-wahed, M. S.; Elbashbeshy, E. M.A.; Emam, T. G., Flow and heat transfer over a moving surface with non-linear velocity and variable thickness in a nanofluids in the presence of Brownian motion, Appl. Math. Comput., 254, 49-62 (2015) · Zbl 1410.76450
[10] Guo, C. J.; Zheng, L. C.; Zhang, C. L.; Chen, X. H.; Zhang, X. X., Impact of velocity slip and temperature jump of nanofluid in the flow over a stretching sheet with variable thickness, Z. Naturforsch., 71, 413-425 (2016)
[11] Hayat, T.; Khan, M. I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T., Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transfer, 99, 702-710 (2016)
[12] Liu, L.; Zheng, L. C.; Liu, F. W.; Zhang, X. X., Heat conduction with fractional Cattaneo-Christov upper-convective derivative flux model, Int. J. Therm. Sci., 112, 421-426 (2017)
[13] Du, M. L.; Wang, Z. H.; Hu, H. Y., Measuring memory with the order of fractional derivative, Sci. Rep., 3, 3431 (2013)
[14] Song, D. Y.; Jiang, T. Q., Study on the constitutive equation with fractional derivative for the viscoelastic fluids -Modified Jeffreys model and its application, Rheol. Acta, 37, 512-517 (1998)
[15] Bagley, R. L.; Torvik, P. J., A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity, J. Rheol., 27, 201-210 (1983) · Zbl 0515.76012
[16] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 461-580 (2002) · Zbl 0999.82053
[17] Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15, 939-945 (2010) · Zbl 1221.74012
[18] Jiang, X. Y.; Qi, H. T., Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative, J. Phys. A, 45, 485101 (2012) · Zbl 1339.80006
[19] Chen, W.; Zhang, J. J.; Zhang, J. Y., A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures, Fract. Calc. Appl. Anal., 16, 76-92 (2013) · Zbl 1312.76058
[20] Xu, H. Y.; Jiang, X. Y., Time fractional dual-phase-lag heat conduction equation, Chin. Phys. B, 24, 034401 (2015)
[21] Zhao, J. H.; Zheng, L. C.; Zhang, X. X.; Liu, F. W., Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate, Int. J. Heat Mass Transfer, 97, 760-766 (2016)
[22] Liu, L.; Zheng, L. C.; Liu, F. W.; Zhang, X. X., An improved heat conduction model with Riesz fractional Cattaneo-Christov flux, Int. J. Heat Mass Transfer, 103, 1191-1197 (2016)
[23] Subhashini, S. V.; Sumathi, R.; Pop, I., Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness, Int. Commun. Heat Mass, 48, 61-66 (2013)
[24] Asghar, S.; Ahmad, A.; Alsaedi, A., Flow of a viscous fluid over an impermeable shrinking sheet, Appl. Math. Lett., 26, 1165-1168 (2013) · Zbl 1308.76085
[25] Elbashbeshy, E. M.A.; Emam, T. G.; Abdel-wahed, M. S., Flow and heat transfer over a moving surface with nonlinear velocity and variable thickness in a nanofluid in the presence of thermal radiation, Can. J. Phys., 92, 124-130 (2014)
[26] Friedrich, C., Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30, 151-158 (1991)
[27] Liu, L.; Zheng, L. C.; Liu, F. W.; Zhang, X. X., Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux, Commun. Nonlinear Sci., 38, 45-58 (2016) · Zbl 1458.76095
[28] Chen, J.; Liu, F.; Anh, V.; Shen, S.; Liu, Q.; Liao, C., The analytical solution and numerical solution of the fractional diffusion-wave equation with damping, Appl. Math. Comput., 219, 1737-1748 (2012) · Zbl 1290.35306
[29] Liu, L.; Zheng, L. C.; Zhang, X. X., Fractional anomalous diffusion with Cattaneo-Christov flux effects in a comb-like structure, Appl. Math. Model., 40, 6663-6675 (2016) · Zbl 1465.82009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.