×

Advection-diffusion in a porous medium with fractal geometry: fractional transport and crossovers on time scales. (English) Zbl 1530.76076

Summary: In a porous fractal medium, the transport dynamics is sometimes anomalous as well as the crossover between numerous transport regimes occurs. In this paper, we experimentally investigate the mass transfer of the diffusing agents of various classes in the composite porous particle with fractal geometry. It is shown that transport mechanisms differ at short and long times. At the beginning, pure advection is observed, whereas the longtime transport follows a convective mechanism. Moreover, the longtime transport experiences either Fickian or non-Fickian kinetics depending on the diffusing agent. The non-Fickian transport is justified for the diffusing agent with higher adsorption energy. Therefore, we speculate that non-Fickian transport arises due to the strong irreversible adsorption sticking of the diffusing molecules on the surface of the porous particle. For the distinguishing of the transport regimes, an approach admitting the transformations of the experimental data and the relevant analytic solutions in either semi-logarithmic or logarithmic coordinates is developed. The time-fractional advection-diffusion equation is used on a phenomenological basis to describe the experimental data exhibiting non-Fickian kinetics. The obtained anomalous diffusion exponent corresponds to the superdiffusive transport.

MSC:

76S05 Flows in porous media; filtration; seepage
76R50 Diffusion
28A80 Fractals
76-05 Experimental work for problems pertaining to fluid mechanics

Software:

Parampool
Full Text: DOI

References:

[1] Yu, X.; Regenauer-Lieb, K.; Tian, FB, A hybrid immersed boundary-lattice Boltzmann/finite difference method for coupled dynamics of fluid flow, advection, diffusion and adsorption in fractured and porous media, Comput Geosci, 128, 70-78 (2019) · doi:10.1016/j.cageo.2019.04.005
[2] Wang, W.; Fan, D.; Sheng, G., A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs, Fuel, 256, 115737 (2019) · doi:10.1016/j.fuel.2019.115737
[3] Wang, C.; Winterfeld, P.; Johnston, B.; Wu, YS, An embedded 3D fracture modeling approach for simulating fracture-dominated fluid flow and heat transfer in geothermal reservoirs, Geothermics, 86, 101831 (2020) · doi:10.1016/j.geothermics.2020.101831
[4] Vivas-Cruz, LX; González-Calderón, A.; Taneco-Hernández, MA; Luis, DP, Theoretical analysis of a model of fluid flow in a reservoir with the Caputo-Fabrizio operator, Commun Nonlinear Sci Numer Simul, 84, 105186 (2020) · Zbl 1451.35141 · doi:10.1016/j.cnsns.2020.105186
[5] Alotta, G.; Di Paola, M.; Pinnola, FP; Zingales, M., A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels, Meccanica, 55, 891-906 (2020) · doi:10.1007/s11012-020-01144-y
[6] Failla, G.; Zingales, M., Advanced materials modelling via fractional calculus: challenges and perspectives, Philos Trans R Soc A Math Phys Eng Sci (2020) · doi:10.1098/rsta.2020.0050
[7] Qi, H.; Liu, J., Time-fractional radial diffusion in hollow geometries, Meccanica, 45, 577-583 (2010) · Zbl 1258.35120 · doi:10.1007/s11012-009-9275-2
[8] Chang, A.; Sun, HG; Zhang, Y., Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs, Phys A Stat Mech its Appl, 519, 119-126 (2019) · Zbl 1514.76086 · doi:10.1016/j.physa.2018.11.040
[9] Li, C.; Yi, Q., Modeling and Computing of Fractional Convection Equation, Commun Appl Math Comput, 1, 565-595 (2019) · Zbl 1463.65229 · doi:10.1007/s42967-019-00019-8
[10] O’Shaughnessy, B.; Procaccia, I., Diffusion on fractals, Phys Rev A, 32, 3073-3083 (1985) · doi:10.1103/PhysRevA.32.3073
[11] Yu, B., Analysis of flow in fractal porous media, Appl Mech Rev, 61, 0508011-05080119 (2008) · doi:10.1115/1.2955849
[12] Butera, S.; Di Paola, M., A physically based connection between fractional calculus and fractal geometry, Ann Phys (N Y), 350, 146-158 (2014) · Zbl 1344.26001 · doi:10.1016/j.aop.2014.07.008
[13] Sandev, T.; Schulz, A.; Kantz, H.; Iomin, A., Heterogeneous diffusion in comb and fractal grid structures, Chaos Solitons Fractals, 114, 551-555 (2018) · Zbl 1415.82011 · doi:10.1016/j.chaos.2017.04.041
[14] Sandev, T.; Iomin, A.; Kantz, H., Anomalous diffusion on a fractal mesh, Phys Rev E, 95, 52107 (2017) · doi:10.1103/PhysRevE.95.052107
[15] Huang, T.; Du, P.; Peng, X., Pressure drop and fractal non-Darcy coefficient model for fluid flow through porous media, J Pet Sci Eng, 184, 106579 (2020) · doi:10.1016/j.petrol.2019.106579
[16] Yang, X.; Liang, Y.; Chen, W., A spatial fractional seepage model for the flow of non-Newtonian fluid in fractal porous medium, Commun Nonlinear Sci Numer Simul, 65, 70-78 (2018) · Zbl 1508.76009 · doi:10.1016/j.cnsns.2018.05.014
[17] Balankin, AS; Valdivia, JC; Marquez, J., Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity, Phys Lett Sect A Gen At Solid State Phys, 380, 2767-2773 (2016) · doi:10.1016/j.physleta.2016.06.032
[18] Jin, Y.; Li, X.; Zhao, M., A mathematical model of fluid flow in tight porous media based on fractal assumptions, Int J Heat Mass Transf, 108, 1078-1088 (2017) · doi:10.1016/j.ijheatmasstransfer.2016.12.096
[19] Liu, R.; Jiang, Y.; Li, B.; Wang, X., A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks, Comput Geotech, 65, 45-55 (2015) · doi:10.1016/j.compgeo.2014.11.004
[20] Xie, J.; Gao, M.; Zhang, R., Experimental investigation on the anisotropic fractal characteristics of the rock fracture surface and its application on the fluid flow description, J Pet Sci Eng, 191, 107190 (2020) · doi:10.1016/j.petrol.2020.107190
[21] Yin, P.; Zhao, C.; Ma, J., Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique, Int J Rock Mech Min Sci, 129, 104293 (2020) · doi:10.1016/j.ijrmms.2020.104293
[22] Qi, H.; Guo, X., Transient fractional heat conduction with generalized Cattaneo model, Int J Heat Mass Transf, 76, 535-539 (2014) · doi:10.1016/j.ijheatmasstransfer.2013.12.086
[23] Liu, L.; Zheng, L.; Liu, F., Research on macroscopic and microscopic heat transfer mechanisms based on non-Fourier constitutive model, Int J Heat Mass Transf, 127, 165-172 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.06.011
[24] Liu, L.; Feng, L.; Xu, Q., Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int Commun Heat Mass Transf, 116, 104679 (2020) · doi:10.1016/j.icheatmasstransfer.2020.104679
[25] Palombo, M.; Gabrielli, A.; Servedio, VDP, Structural disorder and anomalous diffusion in random packing of spheres, Sci Rep, 3, 2631 (2013) · doi:10.1038/srep02631
[26] Molina-Garcia, D.; Sandev, T.; Safdari, H., Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayers, New J Phys, 20, 103027 (2018) · doi:10.1088/1367-2630/aae4b2
[27] Schieber, GL; Jones, BM; Orlando, TM; Loutzenhiser, PG, Advection diffusion model for gas transport within a packed bed of JSC-1A regolith simulant, Acta Astronaut, 169, 32-39 (2020) · doi:10.1016/j.actaastro.2019.12.031
[28] Jannelli, A.; Ruggieri, M.; Speciale, MP, Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries, Nonlinear Dyn, 92, 543-555 (2018) · Zbl 1398.34019 · doi:10.1007/s11071-018-4074-8
[29] Mojtabi, A.; Deville, MO, One-dimensional linear advection-diffusion equation: analytical and finite element solutions, Comput Fluids, 107, 189-195 (2015) · Zbl 1390.76340 · doi:10.1016/j.compfluid.2014.11.006
[30] Zel’dovich YB, Myshkis AD,, Elements of mathematical physics (1973), Moscow: Nauka Publishing House, Moscow
[31] Weberszpil, J.; Lazo, MJ; Helayël-Neto, JA, On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric, Phys A Stat Mech its Appl, 436, 399-404 (2015) · Zbl 1400.81150 · doi:10.1016/j.physa.2015.05.063
[32] Zhokh, A.; Strizhak, P., Non-Fickian diffusion of methanol in mesoporous media: geometrical restrictions or adsorption-induced?, J Chem Phys, 146, 124704 (2017) · doi:10.1063/1.4978944
[33] Schloemer, S.; Krooss, BM, Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations, Geofluids, 4, 81-108 (2004) · doi:10.1111/j.1468-8123.2004.00076.x
[34] Dong, J.; Cheng, Y.; Jiang, J.; Guo, P., Effects of tectonism on the pore characteristics and methane diffusion coefficient of coal, Arab J Geosci, 13, 1-10 (2020) · doi:10.1007/s12517-020-05475-8
[35] Datema, KP; Den Ouden, CJJ; Ylstra, WD, Fourier-transform pulsed-field-gradient 1H nuclear magnetic resonance investigation of the diffusion of light n-alkanes in zeolite ZSM-5, J Chem Soc Faraday Trans, 87, 1935-1943 (1991) · doi:10.1039/FT9918701935
[36] Raghavan, R.; Chen, CC, A study in fractional diffusion: Fractured rocks produced through horizontal wells with multiple, hydraulic fractures, Oil Gas Sci Technol, 75, 68 (2020) · doi:10.2516/ogst/2020062
[37] Langtangen, HP; Pedersen, GK, Basic partial differential equation models, Scaling of differential equations. Simula SpringerBriefs on Computing (2016), Cham: Springer, Cham · Zbl 1382.35001 · doi:10.1007/978-3-319-32726-6_3
[38] Fagan, WF; Hoffman, T.; Dahiya, D., Improved foraging by switching between diffusion and advection: benefits from movement that depends on spatial context, Theor Ecol, 13, 127-136 (2020) · doi:10.1007/s12080-019-00434-w
[39] Vilquin A, Bertin V, Soulard P et al (2020) Time dependence of advection-diffusion coupling for nanoparticle ensembles. Arxiv preprint. arXiv:2007.08261
[40] LaBolle, EM; Quastel, J.; Fogg, GE, Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations, Water Resour Res, 34, 1685-1693 (1998) · doi:10.1029/98WR00319
[41] Ito, K.; Miyazaki, S., Crossover between anomalous superdiffusion and normal diffusion in oscillating convection flows, Prog Theor Phys, 110, 875-887 (2003) · Zbl 1140.76469 · doi:10.1143/PTP.110.875
[42] Zheng, L.; Wang, L.; James, SC, When can the local advection-dispersion equation simulate non-Fickian transport through rough fractures?, Stoch Environ Res Risk Assess, 33, 931-938 (2019) · doi:10.1007/s00477-019-01661-7
[43] Muralidhar, R.; Ramkrishna, D., Diffusion in pore fractals: a review of linear response models, Transp Porous Media, 13, 79-95 (1993) · doi:10.1007/BF00613271
[44] Nizkaya, TV; Asmolov, ES; Vinogradova, OI, Advective superdiffusion in superhydrophobic microchannels, Phys Rev E, 96, 033109 (2017) · doi:10.1103/PhysRevE.96.033109
[45] ten Elshof, JE; Abadal, CR; Sekulić, J., Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids, Microporous Mesoporous Mater, 65, 197-208 (2003) · doi:10.1016/j.micromeso.2003.08.010
[46] Aguilar-Armenta, G.; Patino-Iglesias, ME; Leyva-Ramos, R., Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures, Adsorpt Sci Technol, 21, 81-92 (2003) · doi:10.1260/02636170360699831
[47] Haase, F.; Sauer, J., Interaction of methanol with Broensted acid sites of zeolite catalysts: an ab initio study, J Am Chem Soc, 117, 3780-3789 (1995) · doi:10.1021/ja00118a014
[48] Zamani, M.; Dabbagh, HA, Adsorption behavior of the primary, secondary and tertiary Alkyl, Allyl and Aryl Alcohols over nanoscale (1 0 0) surface of γ-Alumina, J Nanoanalysis, 1, 21-30 (2014)
[49] Zhang, Y.; Yu, JY; Yeh, YH, An adsorption study of CH4 on ZSM-5, MOR, and ZSM-12 zeolites, J Phys Chem C, 119, 28970-28978 (2015) · doi:10.1021/acs.jpcc.5b09571
[50] Sawilowsky, EF; Meroueh, O.; Schlegel, HB; Hase, WL, Structures, energies, and electrostatics for methane coniplexed with alumina clusters, J Phys Chem A, 104, 4920-4927 (2000) · doi:10.1021/jp9926084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.