×

Hopf bifurcation and chaos in a Leslie-Gower prey-predator model with discrete delays. (English) Zbl 1461.92099

This article explores Leslie’s multiple deferred prey model. In this paper, the presence of a Hopf bifurcation for various combinations of discrete delays τ1 and τ2 on the dynamics of the model is established. The Hopf bifurcation is responsible for switching a stable system to an instable one with respect to delays. The model demonstrates a wide range of complex dynamics from stability to chaos, including quasiperiodic solutions. The properties of periodic solutions with respect to τ1 are determined. Global stability for a system with and without latency has been established under certain conditions. It is shown that bifurcational periodic solutions are supercritical, stable, and grow with time. To confirm the theoretical conclusions of the analysis, extensive numerical simulations were carried out to illustrate the complex dynamics of the system, namely, periodicity, quasiperiodicity, and chaos. This study can help draw conclusions about population dynamics with different lag times.

MSC:

92D25 Population dynamics (general)
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
Full Text: DOI

References:

[1] Aiello, W. G. and Freedman, H. I., A time-delay model of single species growth with stage structure, Math. Biosci.101 (1990) 139-53. · Zbl 0719.92017
[2] Bellman, R. and Cooke, K. L., Differential-Difference Equations, (Academic Press, New York, 1963). · Zbl 0105.06402
[3] Beretta, E. and Kuang, Y., Geometric stability switch criteria in delay differential systems with delay dependant parameters, SIAM. J. Math. Anal.33 (2002) 1144-1165. · Zbl 1013.92034
[4] Cooke, K., Van Den, P Driessche and Zou, X., Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol.39 (1999) 32-352. · Zbl 0945.92016
[5] Cooke, K. and Grossman, Z., Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl.86 (1982) 592-627. · Zbl 0492.34064
[6] Cushing, J. M., Integro-Differential Equations and Delay Model in Population Dynamics, (Springer, Heidelberg, 1977). · Zbl 0363.92014
[7] Dubey, B., Kumar, A. and Maiti, A. P., Global stability and Hopf bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge, Commun. Nonlinear Sci. Numer. Simulat.67 (2019) 528-554. · Zbl 1508.92204
[8] Fan, G., Min-oo, M. and Wolkowicz, G. S. K., Hopf Bifurcations of delay differential equations with delay dependent parameters, Can. Appl. Math. Quat.16 (2009). · Zbl 1216.34067
[9] Freedman, H. I., Deterministic Mathematical Models in Population Ecology (Dekker, New York, 1980). · Zbl 0448.92023
[10] Gakkhar, S., Negi, K. and Sahani, S. K., Effects of seasonal growth on ratio dependent delayed prey-predator system, Commun. Nonlinear Sci. Numer. Simulat.14 (2009) 850-862. · Zbl 1221.34187
[11] Gakkhar, S., Sahani, S. K. and Negi, K., Effects of seasonal growth on delayed prey-predator model, Chaos Solitons Fractals39 (2009) 230-239. · Zbl 1197.34134
[12] Gakkar, S. and Singh, A., Complex dynamics in a prey-predator system with multiple delays, Commun. Nonlinear Sci. Numer. Simulat.17 (2012) 914-929. · Zbl 1243.92051
[13] Gakkar, S. and Singh, A., A delay model for viral infection in toxin producing phytoplankton and zooplankton system, Commun. Nonlinear Sci. Numer. Simulat.15 (2010) 3607-3620. · Zbl 1222.37098
[14] Gakkhar, S., Singh, A. and Singh, B. P., Effect of delay and seasonality on toxin producing phytoplankton-zooplankton system, Int. J. Biomath.5 (2012) 1250047. · Zbl 1291.37117
[15] Gopalsamy, K., Harmless delays in model systems, Bull. Math. Biol.45 (1983) 295-309. · Zbl 0514.34060
[16] Hassard, B., Kazarinoff, N. and Wan, Y., Theory and Applications of Hopf Bifurcation, (Cambridge University Press, Cambridge, 1981). · Zbl 0474.34002
[17] Hastings, A., Delays in recruitment at different trophic levels: effect on stability, J. Math. Biol.21 (1984) 35-44. · Zbl 0547.92014
[18] Hale, J. K., Theory of Functional Differential Equations, (Springer, New York, 1977). · Zbl 0352.34001
[19] Hale, J. K. and Lunel, S. M. Verduyn, Theory of Functional Differential Equations, (Springer, New York, 1993). · Zbl 0787.34002
[20] Hu, G., Li, W. and Yan, X., Hopf bifurcations in a predator-prey system with multiple delays, Chaos, Solitons, Fractals42 (2009) 1273-1285. · Zbl 1198.34143
[21] He, X., Stability and delays in a predator-prey system, J. Math. Anal. Appl.198 (1996) 355-370. · Zbl 0873.34062
[22] Kar, T. K. and Ghorai, Abhijit, Dynamic behaviour of a delayed predator-prey model with harvesting, Appl. Math. Comput.217 (2011) 9085-9104. · Zbl 1215.92065
[23] Kajiwara, T., Sasaki, T. and Takeuchi, Y., Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal.: Real World Appl.13 (2012) 1802-1826. · Zbl 1257.34053
[24] Korobeinikov, A., A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett.14 (2001) 697-699. · Zbl 0999.92036
[25] Kot, M., Elements of Mathematical Ecology, (Cambridge University Press, Cambridge, 2001). · Zbl 1060.92058
[26] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, (Academic press Inc., Boston, 1993). · Zbl 0777.34002
[27] Kuang, Y. and Smith, H. L., Slowly oscillating periodic solutions of autonomous state-dependent delay equations, Nonlinear Anal.19 (1992) 855-872. · Zbl 0774.34054
[28] Liu, Q., Lin, Y. and Cao, J., Global Hopf Bifurcation on two-delays Leslie-Gower predator-prey system with a prey refuge, Comput. Math. Methods Med.12 (2014). · Zbl 1307.92328
[29] Ma, Z. and Wang, S., A generalized predator-prey system with multiple discrete delays and habitat complexity, Jpn. J. Indust. Appl. Math.36 (2019) 385-406. · Zbl 1419.37083
[30] Manna, K. and Chakrabarty, S. P., Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis, Commun. Nonlinear Sci. Numer. Simul.22 (2015) 383-395. · Zbl 1329.92076
[31] Macdonald, N., Time delay in prey-predator models, Math. Biosci.28 (1976) 321-330. · Zbl 0324.92016
[32] Macdonald, N., Biological Delay Systems: Linear Stability Theory, (Cambridge University Press, Cambridge, 1989). · Zbl 0669.92001
[33] May, R. M., Stability and Complexity in Model Ecosystems, (Princeton University Press, Princeton, NJ, 2001). · Zbl 1044.92047
[34] Meng, X. Y., Huo, H. F. and Zhang, X. B., Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput.60 (2018) 1-25. · Zbl 1422.34243
[35] Murray, J. D., Mathematical Biology I. An Introduction, (Springer, New York, 2002). · Zbl 1006.92001
[36] Nindjin, A. F., Aziz-Alaoui, M. A. and Cadivel, M., Analysis of predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal., Real World Appl.7 (2006) 1104-1118. · Zbl 1104.92065
[37] Roy, B., Roy, S. K. and Gurung, D. B., Holling-Tanner model with Beddington - DeAngelis functional response and time delay introducing harvesting, Math. Comput. Simul., 142 (2017) 1-14. · Zbl 1540.92137
[38] Ruan, S. and Wei, J., On the zeros of transcendental function with applications to stability of delay differential equations with two zeros, Dynam. Contin. Discr. Impul. Syst. Ser. A: Math. Anal., 10 (2003) 863-874. · Zbl 1068.34072
[39] Ruan, S., The effect of delays on stability and persistence in plankton models, Nonlinear Anal.: Theory, Methods Applications, 24 (1995) 575-585. · Zbl 0830.34067
[40] Smith, H. L. and Kuang, Y., Periodic solutions of delay differential equations of threshold-type delay, in Oscillation and Dynamics in Delay Equations, eds. Graef and Hale, , Vol. 129 (American Mathematical Society, Providence, RI, 1992), pp. 153-176. · Zbl 0762.34044
[41] Song, Y. and Wei, J., Bifurcation analysis for chen’s system with delayed feedback and its application to control of chaos, Chaos, Solitons, Fractals22 (2004) 75-91. · Zbl 1112.37303
[42] Song, Y. and Wei, J., Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl.301 (2005) 1-21. · Zbl 1067.34076
[43] Tripathi, J. P., Tyagi, S. and Abbas, S., Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun Nonlinear Sci. Numer. Simulat.30 (2016) 45-69. · Zbl 1489.92125
[44] Wei, J. and Ruan, S., Stability and bifurcation in a neural network model with two delays, Physica D130 (1999), 255-272. · Zbl 1066.34511
[45] Wang, W. and Ma, Z., Harmless delays for uniform persistence, J. Math. Anal. Appl.158 (1991) 256-268. · Zbl 0731.34085
[46] Wu, J., Theory and Applications of Partial Functional Differential Equations, (Springer, New York, 1996). · Zbl 0870.35116
[47] Wu, S. and Ren, G., A note on delay-independent stability of a predator-prey model, J. Sound Vib.275 (2004) 17-25. · Zbl 1236.34101
[48] Yan, X. P. and Zhang, C. H., Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal. Real World Appl.9 (2008) 114-127. · Zbl 1149.34048
[49] Yuan, S. and Song, Y., Bifurcation and stability analysis for a delayed Leslie-Gower predator-prey system, IMA J. Appl. Math.74 (2009) 574-603. · Zbl 1201.34132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.