×

On starlikeness of regular Coulomb wave functions. (English) Zbl 1515.30016

Summary: In this paper, we study some geometric properties of a class of analytic functions which is defined from the \(J\)-fraction expansion of the ratio \(zf'(z)/f(z)\). We find the disk domain which is mapped into a starlike domain by these functions. Moreover, we study similar results for two different normalized forms of regular Coulomb wave functions and a normalized Bessel function of the first kind by using continued fractions expansions.

MSC:

30B70 Continued fractions; complex-analytic aspects
11J70 Continued fractions and generalizations
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)

Software:

DLMF
Full Text: DOI

References:

[1] Akta\c{s}, \.{I}brahim, Geometric and monotonic properties of hyper-Bessel functions, Ramanujan J., 275-295 (2020) · Zbl 1481.30004 · doi:10.1007/s11139-018-0105-9
[2] Baricz, \'{A}rp\'{a}d, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc., 3355-3367 (2016) · Zbl 1400.30017 · doi:10.1090/proc/13120
[3] Baricz, \'{A}rp\'{a}d, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 2019-2025 (2014) · Zbl 1291.30062 · doi:10.1090/S0002-9939-2014-11902-2
[4] Baricz, \'{A}rp\'{a}d, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 641-653 (2010) · Zbl 1205.30010 · doi:10.1080/10652460903516736
[5] Baricz, \'{A}rp\'{a}d, The Hurwitz-type theorem for the regular Coulomb wave function via Hankel determinants, Linear Algebra Appl., 259-272 (2018) · Zbl 1390.15018 · doi:10.1016/j.laa.2018.03.012
[6] Baricz, \'{A}rp\'{a}d, Geometric properties of some Lommel and Struve functions, Ramanujan J., 325-346 (2017) · Zbl 1361.30021 · doi:10.1007/s11139-015-9724-6
[7] K. Bartschat, Computational Atomic Physics, Springer, Berlin, 1996.
[8] Brown, R. K., Univalence of Bessel functions, Proc. Amer. Math. Soc., 278-283 (1960) · Zbl 0090.05003 · doi:10.2307/2032969
[9] Brown, R. K., Univalent solutions of \(W^{\prime \prime }, pW=0\), Canadian J. Math., 69-78 (1962) · Zbl 0108.08102 · doi:10.4153/CJM-1962-006-4
[10] Cuyt, Annie, Handbook of continued fractions for special functions, xvi+431 pp. (2008), Springer, New York · Zbl 1150.30003
[11] Hayden, T. L., Chain sequences and univalence, Illinois J. Math., 523-528 (1964) · Zbl 0122.07803
[12] H\"{a}st\"{o}, Peter, Starlikeness of the Gaussian hypergeometric functions, Complex Var. Elliptic Equ., 173-184 (2010) · Zbl 1187.30017 · doi:10.1080/17476930903276134
[13] Kreyszig, Erwin, The radius of univalence of Bessel functions. I, Illinois J. Math., 143-149 (1960) · Zbl 0091.06203
[14] K\"{u}stner, Reinhold, Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order \(\alpha \), Comput. Methods Funct. Theory, 597-610 (2002) · Zbl 1053.30006 · doi:10.1007/BF03321867
[15] Leighton, Walter, A general continued fraction expansion, Bull. Amer. Math. Soc., 596-605 (1939) · Zbl 0021.33004 · doi:10.1090/S0002-9904-1939-07046-8
[16] Merkes, E. P., On univalence of a continued fraction, Pacific J. Math., 1361-1369 (1960) · Zbl 0095.05803
[17] N. Michel, Precise Coulomb wave functions for a wide range of complex \(\ell , \eta\) and \(z\), Comput. Phys. Commun. 176 (2007) 232-249. · Zbl 1196.81030
[18] NIST handbook of mathematical functions, xvi+951 pp. (2010), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge · Zbl 1198.00002
[19] Ponnusamy, S., Univalence and convexity properties for confluent hypergeometric functions, Complex Variables Theory Appl., 73-97 (1998) · Zbl 0902.30011 · doi:10.1080/17476939808815101
[20] Ponnusamy, S., Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math., 327-353 (2001) · Zbl 0973.30017 · doi:10.1216/rmjm/1008959684
[21] Robertson, M. S., Schlicht solutions of \(W''+pW=0\), Trans. Amer. Math. Soc., 254-274 (1954) · Zbl 0057.31101 · doi:10.2307/1990768
[22] Ruscheweyh, St., On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl., 1-11 (1986) · Zbl 0598.30021 · doi:10.1016/0022-247X(86)90329-X
[23] Scott, W. T., The corresponding continued fraction of a \(J\)-fraction, Ann. of Math. (2), 56-67 (1950) · Zbl 0035.33201 · doi:10.2307/1969497
[24] Wall, H. S., Analytic Theory of Continued Fractions, xiii+433 pp. (1948), D. Van Nostrand Co., Inc., New York, N. Y. · Zbl 0035.03601
[25] Wang, Li-Mei, On the order of convexity for the shifted hypergeometric functions, Comput. Methods Funct. Theory, 505-522 (2021) · Zbl 1476.30080 · doi:10.1007/s40315-021-00383-8
[26] Wilf, Herbert S., The radius of univalence of certain entire functions, Illinois J. Math., 242-244 (1962) · Zbl 0109.30203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.