×

Observer-based adaptive controller design for chaos synchronization using Bernstein-type operators. (English) Zbl 1528.93100

Summary: This article uses the Bernstein-type operators as the universal approximator to present an observer-based robust adaptive controller for chaos synchronization. The lumped uncertainties including, un-modeled dynamics and external disturbances, are modeled with this potent mathematic tool. It is shown that using the Bernstein-type operators as basis functions and tuning the polynomial coefficients by the adaptive laws calculated in the stability analysis, uniform ultimate boundedness of the observer estimation error and synchronization error can be assured. To analyze the performance of the proposed controller scheme in terms of transient response behavior and robustness, the Duffing-Holmes oscillator is considered as the simulation testbed. A set of two different experiments are conducted to evaluate the efficiency of the introduced control approach. The performance of the proposed approach is also compared with RBFNN as a powerful approximation method. Unlike neural network/fuzzy methods, which require system states as inputs to estimate functions and construct a regressor vector, the proposed method is not dependent on the system states. Furthermore, there are more adjustable parameters in the regressor vector of the RBFNN (such as the width and center of the Gaussian units), and assigning the best values for these parameters is tedious and time-consuming work due to the repeated trial and error.
{© 2022 John Wiley & Sons Ltd.}

MSC:

93C40 Adaptive control/observation systems
93B53 Observers
93B35 Sensitivity (robustness)
34H10 Chaos control for problems involving ordinary differential equations
Full Text: DOI

References:

[1] ErogluD, LambJSW, PereiraT. Synchronisation of chaos and its applications. Contemp Phys. 2017;58(3):207‐243. doi:10.1080/00107514.2017.1345844
[2] RevelG, LeonAE, AlonsoDM, MoiolaJL. Bifurcation analysis on a multimachine power system model. IEEE Trans Circuits Syst I Regul Pap. 2010;57(4):937‐949.
[3] BaiC, RenH‐P, BaptistaMS, GrebogiC. Digital underwater communication with chaos. Commun Nonlinear Sci Numer Simul. 2019;73:14‐24. · Zbl 1464.94009
[4] WestBJ. Fractal Physiology and Chaos in Medicine. World Scientific; 2012.
[5] NasrS, MekkiH, BouallegueK. A multi‐scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller. Chaos Soliton Fract. 2019;118:366‐375. · Zbl 1442.93028
[6] OliveiraJ, OliveiraPM, Boaventura‐CunhaJ, PinhoT. Chaos‐based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator. Nonlinear Dyn. 2017;90:1353‐1362.
[7] BuW, YangC, ChenD, ZhouH, HuJ, HouY. Chaos suppression for joint clearances based on trajectory planning of robotic mechanisms. In: ZhangX (ed.), WangN (ed.), HuangY (ed.), eds. Mechanism and Machine Science. ASIAN MMS 2016, CCMMS 2016. Lecture Notes in Electrical Engineering. Vol 408. Springer; 2017.
[8] LiZG, WenCY, SohYC, XieWX. The stabilization and synchronization of Chua’s oscillators via impulsive control. IEEE Trans Circuits Syst I Fund Theory Appl. 2001;48(11):1351‐1355. · Zbl 1024.93052
[9] XiangW, HuangpuY. Second‐order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun Nonlinear Sci Numer Simul. 2010;15:3241‐3247. · Zbl 1222.93045
[10] ZhangJ, LiC, ZhangH, YuJ. Chaos synchronization using single variable feedback based on backstepping method. Chaos Soliton Fract. 2004;21:1183‐1193. · Zbl 1129.93518
[11] ChenF, ZhangW. LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear Anal Theory Methods Appl. 2007;67:3384‐3393. · Zbl 1131.34038
[12] ZhangR, YangS. Robust chaos synchronization of fractional‐order chaotic systems with unknown parameters and uncertain perturbations. Nonlinear Dyn. 2012;69:983‐992. doi:10.1007/s11071-011-0320-z · Zbl 1253.93071
[13] YangY, XuC‐Z. Adaptive fuzzy leader‐follower synchronization of constrained heterogeneous multiagent systems. IEEE Trans Fuzzy Syst. 2020. doi:10.1109/TFUZZ.2020.3021714
[14] SlotineJJ, LiW. Applied Nonlinear Control. Prentice‐Hall; 1991. · Zbl 0753.93036
[15] SpongMW, HutchinsonS, VidyasagarM. Robot Modelling and Control. Wiley; 2006.
[16] YangY, LiuZ, LiQ, WunschDC. Output constrained adaptive controller design for nonlinear saturation systems. IEEE/CAA J Automat Sin. 2021;8(2):441‐454. doi:10.1109/JAS.2020.1003524
[17] YangY, VamvoudakisKG, ModaresH, YinY, WunschDC. Safe intermittent reinforcement learning with static and dynamic event generators. IEEE Trans Neural Netw Learn Syst. 2020;31(12):5441‐5455. doi:10.1109/TNNLS.2020.2967871
[18] YangY, VamvoudakisKG, ModaresH. Safe reinforcement learning for dynamical games. Int J Robust Nonlinear Control. 2020;30(9):3706‐3726. · Zbl 1466.91038
[19] KiumarsiB, LewisFL, ModaresH, KarimpourA, Naghibi‐sistaniMB. Reinforcement Q‐learning for optimal tracking control of linear discrete‐time systems with unknown dynamics. Automatica. 2014;50(4):1167‐1175. · Zbl 1417.93134
[20] LiuY, LiR, CheY, HanC. Chaos synchronization of coupled neurons via H‐infinity control with cooperative weights neural network. In: JinD (ed.), LinS (ed.), eds. Advances in Future Computer and Control Systems. Advances in Intelligent and Soft Computing. Vol 160. Springer; 2012.
[21] YauH‐T, ShiehC‐S. Chaos synchronization using fuzzy logic controller. Nonlinear Anal Real World Appl. 2008;9:1800‐1810. · Zbl 1154.34334
[22] IzadbakhshA. FAT‐based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dyn. 2017;89:289‐304. · Zbl 1374.93247
[23] IzadbakhshA, KhorashadizadehS, KheirkhahanP. Real‐time fuzzy fractional‐order control of electrically driven flexible‐joint robots. AUT J Model Simul. 2018. doi:10.22060/MISCJ.2018.13523.5075
[24] HsuCF. Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst Appl. 2011;38:10475‐10483.
[25] ChenPC, HuangAC. Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics. Veh Syst Dyn. 2006;44(5):357‐368.
[26] IzadbakhshA. Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations. AUT J Model Simul. 2018;50(1):31‐38.
[27] TsaiYC, HuangAC. FAT based adaptive control for pneumatic servo system with mismatched uncertainties. Mech Syst Signal Process. 2008;22:1263‐1273.
[28] IzadbakhshA, NikdelN. Robust adaptive controller-observer scheme for robot manipulators: a Bernstein-Stancu approach. Robotica. 2021;1‐17. doi:10.1017/S0263574721001120
[29] A.Izadbakhsh, H.Jabbari Asl and TatsuoNarikiyo, Robust adaptive control of over‐constrained actuated cable‐driven parallel robots, In: PottA. (ed.), BruckmannT (ed.). (eds) Cable‐Driven Parallel Robots. CableCon 2019. Mechanisms and Machine Science, Vol. 74. Springer, Click here to enter text.DOI: 10.1007/978-3-030-20751-9_18, 209-220.
[30] Villalobos‐ChinJ, SantibáñezV. An adaptive Regressor‐free Fourier series‐based tracking controller for robot manipulators: theory and experimental evaluation. Robotica. 2021;1‐16:1981‐1996. doi:10.1017/S0263574721000084
[31] IzadbakhshA, KalatAA, KhorashadizadehS. Observer‐based adaptive control for HIV infection therapy using the Baskakov operator. Biomed Signal Process Control. 2021;65:102343. doi:10.1016/j.bspc.2020.102343
[32] IzadbakhshA, KhorashadizadehS, GhandaliS. Robust adaptive impedance control of robot manipulators using Szasz‐Mirakyan operator as universal approximator. ISA Trans. 2020;106:1‐11.
[33] Ben SassiMA, SankaranarayananS. Stabilization of polynomial dynamical systems using linear programming based on Bernstein polynomials. Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control; 2015:291‐292; ACM, New York, NY. · Zbl 1364.93679
[34] SassiMAB, BartocciE, SankaranarayananS. A linear programming‐based iterative approach to stabilizing polynomial dynamics. IFAC‐Papers OnLine. 2017;50(1):10462‐10469.
[35] SassiMAB, GirardA. Computation of polytopic invariants for polynomial dynamical systems using linear programming. Automatica. 2012;48(12):3114‐3121. · Zbl 1256.93040
[36] IzadbakhshA, KhorashadizadehS. Robust adaptive control of robot manipulators using Bernstein polynomials as universal approximator. Int J Robust Nonlinear Control. 2020;30:2719‐2735. doi:10.1002/rnc.4913 · Zbl 1465.93048
[37] BleimannG, ButzerPL, HahnL. A Bernstein‐type operator approximating continuous functions on the semi‐axis. Indagat Math. 1980;83(3):255‐262. · Zbl 0437.41021
[38] IzadbakhshA, ZamaniI, KhorashadizadehS. Szász-Mirakyan‐based adaptive controller design for chaotic synchronization. Int J Robust Nonlinear Control. 2020;31:1689‐1703. doi:10.1002/rnc.5380 · Zbl 1526.93116
[39] KhorashadizadehIS, MajidiM‐H. Chaos synchronization using the Fourier series expansion with application to secure communications. AEU‐Int J Electron C. 2017;82:37‐44. doi:10.1016/j.aeue.2017.07.032
[40] Moradi ZirkohiJM, KhorashadizadehS. Chaos synchronization using higher‐order adaptive PID controller. AEU ‐ Int J Electron Commun. 2018;94:157‐167. doi:10.1016/j.aeue.2018.07.005
[41] IzadbakhshA, NikdelN. Chaos synchronization using differential equations as extended state observer. Chaos Soliton Fracts. 2021;153(Part 1):111433. doi:10.1016/j.chaos.2021.111433 · Zbl 1498.34173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.