×

Digital underwater communication with chaos. (English) Zbl 1464.94009

Summary: Recent work has shown that chaotic signals used for communication are capable of maximizing the signal to noise ratio with a simple matched filter algorithm. The present work extends that result by showing that a specially designed continuous chaotic signal and matched filter can be used to communicate digitally in wireless channels with severe physical constrains such as the underwater acoustic channel. To demonstrate this state-of-the-art applicability of chaos, we consider a broadly used Wi-Fi communication system protocol, adapted to create the differential chaos shift keying (DCSK) method, and benchmarking its performance with several current DCSK variants. Our performance analysis shows that the proposed method has reasonably better anti-interference ability, lower Bit Error Rate (BER) and similar or better bit transmission rate as compared with other existing DCSK variants.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Ren, H. P.; Bai, C.; Kong, Q. J.; Baptista, M. S.; Grebogi, C., A chaotic spread spectrum system for underwater acoustic communication, Physica A, 478, 15, 77-92 (2017)
[2] Ren, H. P.; Baptista, M. S.; Grebogi, C., Wireless communication with chaos, Phys Rev Lett, 110, 18, 184101 (2013)
[3] Kurian, A. P.; Puthusserypady, S.; Htut, S. M., Performance enhancement of DS/CDMA system using chaotic complex spreading sequence, IEEE Trans Wireless Commun, 4, 3, 984-989 (2005)
[4] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Volkovskii, A. R., Digital communication using chaotic-pulse-position modulation, IEEE Trans Circuits Syst I, 48, 12, 1436-1444 (2001)
[5] Yu, J.; Yao, Y. D., Detection performance of chaotic spreading LPI waveforms, IEEE Trans Wireless Commun, 4, 2, 390-396 (2005)
[6] Lau, F. C.M.; Tse, C. K., Chaos-based digital communication systems: operating principles, Analysis methods and performance evaluation (2003), Springer Verlag: Springer Verlag Berlin · Zbl 1030.94002
[7] Corron, N. J.; N., B. J., Chaos in optimal communication waveforms, Proc R Soc A, 471, 2180, 20150222 (2015) · Zbl 1371.94009
[8] Apostolos, A.; Dimitris, S.; Laurent, L.; Valerio, A. L.; Pere, C.; Ingo, F., Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, 438, 7066, 343-346 (2005)
[9] Ren, H. P.; Baptista, M. S.; Grebogi, C., Robustness of chaos to media with multipath propagation (2014), Boca Raton: CRC Press
[10] Ren, H. P.; Bai, C.; Liu, J.; Baptista, M. S.; Grebogi, C., Experimental validation of wireless communication with chaos, Chaos, 26, 8, 083117 (2016)
[11] Bai, C.; Ren, H. P.; Li, J., A differential chaos-shift keying scheme based on hybrid system for underwater acoustic communication, Proceedings in IEEE/OES ocean acoustics (COA), 1-5 (2016)
[12] Ren, H. P.; Bai, C.; Huang, Z. Z.; Grebogi, C., Secure communication based on hyper-chaotic chen system with time delay, Int J Bifurcat Chaos, 14, 5, 1750076 (2017) · Zbl 1367.94362
[13] Kaddoum, G., Wireless chaos-based communication systems: a comprehensive survey, IEEE Access, 4, 2621-2648 (2016)
[14] Bai, C.; Ren, H. P.; Grebogi, C.; Baptista, M. S., Chaos-based underwater communication with arbitrary transducers and bandwidth, Appl Sci, 8, 2, 162 (2018)
[15] Parlitz, U.; Chua, L. O.; Kocarev, L. J.; S., H. K.; Shang, A., Transmission of digital signals by chaotic synchronization, Int J Bifurcat Chaos, 2, 4, 973-977 (1992) · Zbl 0870.94011
[16] Tam, W. M.; Lau, F. C.M.; Tse, C. K.; Lawrance, A. J., Exact analytical bit error rates for multiple access chaos-based communication systems, IEEE Trans Circuits Syst II, 51, 9, 473-481 (2004)
[17] Kolumbán, G.; Vizvári, B.; Schwarz, W.; Abel, A., Differential chaos shift keying: a robust coding for chaos communication, Proc Int Workshop Nonlinear Dyn Electron Syst, 96, 87-92 (1996)
[18] Wang, L.; Zhang, C. X.; Chen, G. R., Performance of an SIMO FM-DCSK communication system, IEEE Trans Circuits Syst II, 55, 5, 457-461 (2008)
[19] Xu, W. K.; Wang, L.; Kolumbán, G., A novel differential chaos shift keying modulation scheme, Int J Bifurcat Chaos, 21, 3, 799-814 (2011) · Zbl 1215.94023
[20] Georges, K.; Francois, G., Design of a high-data-rate differential chaos-shift keying system, IEEE Trans Circuits Syst II, 59, 7, 448-452 (2012)
[21] Yang, H.; Jiang, G. P., High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication, IEEE Trans Circuits Syst II, 59, 5, 312-316 (2012)
[22] Yang, H.; Jiang, G. P.; Duan, J. Y., Phase-separated DCSK: a simple delay-component-free solution for chaotic communications, IEEE Trans Circuits Syst II, 61, 12, 967-971 (2014)
[23] Kaddoum, G.; Soujeri, E.; Arcila, C., I-DCSK: an improved noncoherent communication system architecture, IEEE Trans Circuits Syst II, 62, 9, 901-905 (2015)
[24] Corron, N. J.; Blakely, J. N.; Stahl, M. T., A matched filter for chaos, Chaos, 20, 2, 023123 (2010) · Zbl 1311.37002
[25] Saito, T.; Hiroichi, F., Chaos in a manifold piecewise linear system, Electron Commun Jpn, 64, 10, 9-17 (1981)
[26] Chitre, M., A high-frequency warm shallow water acoustic communications channel model and measurements, J Acoust Soc Am, 122, 5, 2580-2586 (2007)
[27] Mahmood, A.; Chitre, M., Uncoded acoustic communication in shallow waters with bursty impulsive noise, Underwater communications and networking conference. 1-5 (2016)
[28] Liu, L. D.; Wang, Y. N.; Hou, L.; Feng, X. R., Easy encoding and low bit-error-rate chaos communication system based on reverse-time chaotic oscillator, IET Signal Process, 11, 7, 869-876 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.