×

Volterra-type convolution of classical polynomials. (English) Zbl 1428.42011

the authors presented a general framework for calculating the Volterra-type convolution of polynomials from an arbitrary polynomial sequence \(\{P_k(x)\}\) \(k \geq 0\) with deg \(P_k(x) = k.\) Based on this framework, series representations for the convolutions of classical orthogonal polynomials, including Jacobi and Laguerre families, are derived.

MSC:

42A85 Convolution, factorization for one variable harmonic analysis
44A35 Convolution as an integral transform
33C05 Classical hypergeometric functions, \({}_2F_1\)
33C20 Generalized hypergeometric series, \({}_pF_q\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Software:

DLMF

References:

[1] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special Functions, Encyclopedia of Mathematics and its Applications 71, xvi+664 pp. (1999), Cambridge University Press, Cambridge · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[2] Area, I.; Godoy, E.; Ronveaux, A.; Zarzo, A., Solving connection and linearization problems within the Askey scheme and its \(q\)-analogue via inversion formulas, J. Comput. Appl. Math.. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 133, 1-2, 151-162 (2001) · Zbl 0988.33008 · doi:10.1016/S0377-0427(00)00640-3
[3] Askey, Richard, Orthogonal Polynomials and Special Functions, vii+110 pp. (1975), Society for Industrial and Applied Mathematics, Philadelphia, Pa. · Zbl 0298.33008
[4] Askey, Richard; Fitch, James, Integral representations for Jacobi polynomials and some applications., J. Math. Anal. Appl., 26, 411-437 (1969) · Zbl 0172.08803 · doi:10.1016/0022-247X(69)90165-6
[5] Atkinson, Kendall E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics 4, xvi+552 pp. (1997), Cambridge University Press, Cambridge · Zbl 1158.65088 · doi:10.1017/CBO9780511626340
[6] Brunner, H.; van der Houwen, P. J., The Numerical Solution of Volterra Equations, CWI Monographs 3, xvi+588 pp. (1986), North-Holland Publishing Co., Amsterdam · Zbl 0611.65092
[7] bmsw W. Bryc, W. Matysiak, R. Szwarc, and J. Wesolowski, Projection formulas for orthogonal polynomials, arXiv:math/0606092v2, 2007. · Zbl 1129.60068
[8] Damelin, Steven B.; Miller, Willard, Jr., The Mathematics of Signal Processing, Cambridge Texts in Applied Mathematics, xii+449 pp. (2012), Cambridge University Press, Cambridge · Zbl 1257.94001
[9] Duffy, Dean G., Green’s Functions with Applications, Advances in Applied Mathematics, xviii+667 pp. (2015), CRC Press, Boca Raton, FL · Zbl 1343.35002 · doi:10.1201/b18159
[10] for D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2011.
[11] GR Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik, Table of integrals, series, and products, Academic press, 2014.
[12] Hagstrom, Thomas, Radiation boundary conditions for the numerical simulation of waves. Acta numerica, 1999, Acta Numer. 8, 47-106 (1999), Cambridge Univ. Press, Cambridge · Zbl 0940.65108 · doi:10.1017/S0962492900002890
[13] Applications of Fractional Calculus in Physics, viii+463 pp. (2000), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0998.26002 · doi:10.1142/9789812817747
[14] Hogg, Robert V.; Craig, Allen T., Introduction to mathematical statistics, Third edition, x+415 pp. (1970), The Macmillan Co., New York; Collier-Macmillan Ltd., London
[15] Ismail, Mourad E. H., Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, xviii+708 pp. (2009), Cambridge University Press, Cambridge · Zbl 1172.42008
[16] Ismail, Mourad E. H.; Koelink, Erik; Rom\'{a}n, Pablo, Generalized Burchnall-type identities for orthogonal polynomials and expansions, SIGMA Symmetry Integrability Geom. Methods Appl., 14, Paper No. 072, 24 pp. (2018) · Zbl 1393.33013 · doi:10.3842/SIGMA.2018.072
[17] Koelink, H. T.; Van Der Jeugt, J., Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal., 29, 3, 794-822 (1998) · Zbl 0977.33013 · doi:10.1137/S003614109630673X
[18] Koepf, Wolfram; Schmersau, Dieter, Representations of orthogonal polynomials, J. Comput. Appl. Math., 90, 1, 57-94 (1998) · Zbl 0907.65017 · doi:10.1016/S0377-0427(98)00023-5
[19] Lew S. Lewanowicz, The hypergeometric functions approach to the connection problem for the classical orthogonal polynomials, Technical Report, 1998.
[20] Linz, Peter, Analytical and Numerical Methods for Volterra Equations, SIAM Studies in Applied Mathematics 7, xiii+227 pp. (1985), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0566.65094 · doi:10.1137/1.9781611970852
[21] Luke, Yudell L., The Special Functions and Their Approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, xx+349 pp. (1969), Academic Press, New York-London · Zbl 0193.01701
[22] Maroni, P., Semi-classical character and finite-type relations between polynomial sequences, Appl. Numer. Math., 31, 3, 295-330 (1999) · Zbl 0962.42017 · doi:10.1016/S0168-9274(98)00137-8
[23] Maroni, P.; da Rocha, Z., Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation, Numer. Algorithms, 47, 3, 291-314 (2008) · Zbl 1147.65020 · doi:10.1007/s11075-008-9184-9
[24] NIST Handbook of Mathematical Functions, xvi+951 pp. (2010), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge · Zbl 1198.00002
[25] Rainville, Earl D., Special Functions, xii+365 pp. (1971), Chelsea Publishing Co., Bronx, N.Y. · Zbl 0231.33001
[26] S\'{a}nchez-Ruiz, J.; Art\'{e}s, P. L.; Mart\'{i}nez-Finkelshtein, A.; Dehesa, J. S., General linearization formulae for products of continuous hypergeometric-type polynomials, J. Phys. A, 32, 42, 7345-7366 (1999) · Zbl 0945.33006 · doi:10.1088/0305-4470/32/42/308
[27] Sontag, Eduardo D., Mathematical control theory, Texts in Applied Mathematics 6, xvi+531 pp. (1998), Springer-Verlag, New York · Zbl 0945.93001 · doi:10.1007/978-1-4612-0577-7
[28] Stakgold, Ivar; Holst, Michael, Green’s Functions and Boundary Value Problems, Pure and Applied Mathematics (Hoboken), xxii+855 pp. (2011), John Wiley & Sons, Inc., Hoboken, NJ · Zbl 1221.35001 · doi:10.1002/9780470906538
[29] Szeg\"{o}, Gabor, Orthogonal Polynomials, American Mathematical Society Colloquium Publications 23, ix+401 pp. (1939), American Mathematical Society, New York · Zbl 0023.21505
[30] tch D. D. Tcheutia, On connection, linearization and duplication coefficients of classical orthogonal polynomials, Ph.D. thesis, Kassel: Universit\"atsbibliothek, 2014.
[31] Trefethen, Lloyd N., Approximation Theory and Approximation Practice, viii+305 pp.+back matter pp. (2013), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1264.41001
[32] wag C. Wagner, T. H\"uttl, and P. Sagaut, Large-Eddy Simulation for Acoustics, Cambridge University Press, 2007.
[33] Wimp, Jet, Connection coefficients, orthogonal polynomials and the WZ-algorithms, Numer. Algorithms, 21, 1-4, 377-386 (1999) · Zbl 0938.33005 · doi:10.1023/A:1019117731699
[34] Xu, Kuan; Loureiro, Ana F., Spectral approximation of convolution operators, SIAM J. Sci. Comput., 40, 4, A2336-A2355 (2018) · Zbl 1396.65158 · doi:10.1137/17M1149249
[35] Zarzo, A.; Area, I.; Godoy, E.; Ronveaux, A., Results for some inversion problems for classical continuous and discrete orthogonal polynomials, J. Phys. A, 30, 3, L35-L40 (1997) · Zbl 0992.33003 · doi:10.1088/0305-4470/30/3/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.