×

Solving connection and linearization problems within the Askey scheme and its \(q\)-analogue via inversion formulas. (English) Zbl 0988.33008

Given a sequence of terminating basic hypergeometric series of the form \[ F_k(x) = {}_r\phi_s\left(\left. {q^{-k},a_2,\ldots, a_r \atop b_1,\ldots, b_s} \right|q; qx \right) \;\text{or} _r\phi_s\left(\left. {q^{-k},a_2q^k,a_3,\ldots, a_r \atop b_1,\ldots, b_s} \right|q; qx \right), \] the authors use an identity of Verma to expand \(x^n\) in terms of these polynomials. They then show how this result can be used to obtain connection coefficients and linearization coefficients for any of the orthogonal polynomials or their \(q\)-analogs within the Askey scheme.

MSC:

33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), Dover: Dover New York
[2] Álvarez-Nodarse, R.; Marcellán, F., The modification of classical Hahn polynomials of a discrete variable, Integral Transforms Special Funct., 4, 3, 243-262 (1995) · Zbl 0849.33007
[3] Álvarez-Nodarse, R.; Ronveaux, A., Recurrence relation for connection coefficients between \(q\)-orthogonal polynomials of discrete variables in the non-uniform lattice \(x(s)=q^{2s}\), J. Phys. A: Math. Gen., 29, 22, 7165-7175 (1996) · Zbl 0932.33026
[4] Álvarez-Nodarse, R.; Yáñez, R. J.; Dehesa, J. S., Modified Clebsch-Gordan-type expansions for products of discrete hypergeometric polynomials, J. Comput. Appl. Math., 89, 171-197 (1998) · Zbl 0909.33006
[5] Andrews, G. E.; Askey, R., Classical orthogonal polynomials, (Brezinski, C.; etal., Polynômes Orthogonaux et Applications. Polynômes Orthogonaux et Applications, Lecture Notes in Mathematics, vol. 1171 (1985), Springer: Springer Berlin), 36-62 · Zbl 0596.33016
[6] Andrews, G. E.; Askey, R.; Roy, R., Special Functions. Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[7] Area, I.; Godoy, E.; Ronveaux, A.; Zarzo, A., Inversion problems in the \(q\)-Hahn tableau, J. Symbolic Comput., 28, 6, 767-776 (1999) · Zbl 0953.33005
[8] Artés, P. L.; Dehesa, J. S.; Martı́nez-Finkelshtein, A.; Sánchez-Ruiz, J., Linearization and connection coefficients for hypergeometric-type polynomials, J. Comput. Appl. Math., 99, 15-26 (1998) · Zbl 0927.33005
[9] Askey, R., Orthogonal Polynomials and Special Functions. Orthogonal Polynomials and Special Functions, CBMS-NSF Reg. Conferences Series in Applied Mathematics, vol. 21 (1975), SIAM: SIAM Philadelphia, Pennsylvania · Zbl 0298.26010
[10] Askey, R.; Wilson, J. A., A set of orthogonal polynomials that generalize the Racah coefficients or \(6-j\) symbols, SIAM J. Math. Anal., 10, 1008-1016 (1979) · Zbl 0437.33014
[11] Askey, R.; Wilson, J. A., Some Basic Hypergeometric Polynomials that Generalize Jacobi Polynomials. Some Basic Hypergeometric Polynomials that Generalize Jacobi Polynomials, Memoirs of the American Mathematical Society, vol. 319 (1985), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0572.33012
[12] Dimitrov, P., Connection coefficients and zeros of orthogonal polynomials, this issue, J. Comput. Appl. Math., 133, 331-340 (2001) · Zbl 1010.42016
[13] Fields, J. L.; Wimp, J., Expansions of hypergeometric functions in hypergeometric functions, Math. Comp., 15, 390-395 (1961) · Zbl 0107.05902
[14] Gasper, G., Projection formulas for orthogonal polynomials of a discrete variable, J. Math. Anal. Appl., 45, 176-198 (1974) · Zbl 0276.33026
[15] Gasper, G.; Rahman, M., Basic Hypergeometric Series. Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 35 (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0695.33001
[16] Godoy, E.; Ronveaux, A.; Zarzo, A.; Area, I., Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Continuous case, J. Comput. Appl. Math., 84, 257-275 (1997) · Zbl 0909.65008
[17] Godoy, E.; Ronveaux, A.; Zarzo, A.; Area, I., On the limit relations between classical continuous and discrete orthogonal polynomials, J. Comput. Appl. Math., 91, 1, 97-105 (1998) · Zbl 0934.33013
[18] Godsil, C. D., Algebraic Combinatorics (1993), Chapman & Hall: Chapman & Hall New York · Zbl 0814.05075
[19] Hylleraas, E., Linearization of products of Jacobi polynomials, Math. Scand., 10, 189-200 (1962) · Zbl 0109.29603
[20] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\); R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)
[21] Koepf, W.; Schmersau, D., Representations of orthogonal polynomials, J. Comput. Appl. Math., 90, 57-94 (1998) · Zbl 0907.65017
[22] Koornwinder, T., Compact quantum groups and \(q\)-special functions, (Baldoni, V.; Picardello, M. A., Representations of Lie Groups and Quantum Groups. Representations of Lie Groups and Quantum Groups, Pitman Research Notes in Mathematics Series, vol. 311 (1994), Longman Scientific & Technical: Longman Scientific & Technical Harlow), 46-128 · Zbl 0821.17015
[23] Lasser, R., Linearization of the product of associated Legendre polynomials, SIAM J. Math. Anal., 14, 403-408 (1983) · Zbl 0509.33007
[24] Lewanowicz, S., Recurrence relations for the connection coefficients of the orthogonal polynomials of a discrete variable, J. Comput. Appl. Math., 76, 213-229 (1996) · Zbl 0877.33003
[25] Y.L. Luke, The Special Functions and their Approximations, 2 Vols. Academic Press, New York, 1969.; Y.L. Luke, The Special Functions and their Approximations, 2 Vols. Academic Press, New York, 1969. · Zbl 0193.01701
[26] Miller, W., Special functions and the complex Euclidean group in 3-space, II, J. Math. Phys., 9, 1175-1187 (1968) · Zbl 0159.09503
[27] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, 3 Vols. Gordon and Breach, New York, 1986.; A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, 3 Vols. Gordon and Breach, New York, 1986. · Zbl 0606.33001
[28] Rainville, E. D., Special Functions (1960), Macmillan: Macmillan New York · Zbl 0050.07401
[29] Ronveaux, A.; Zarzo, A.; Godoy, E., Recurrence relation for connection coefficients between two families of orthogonal polynomials, J. Comput. Appl. Math., 62, 67-73 (1995) · Zbl 0876.65005
[30] Ronveaux, A.; Zarzo, A.; Area, I.; Godoy, E., Transverse limits in the Askey tableau, J. Comput. Appl. Math., 99, 1-2, 327-335 (1998) · Zbl 0936.33004
[31] Szwarc, R., Linearization and connection coefficients of orthogonal polynomials, Mh. Math., 113, 319-329 (1992) · Zbl 0766.33008
[32] N.M. Temme, J.L. López, The role of Hermite polynomials in asymptotics analysis, CWI Report MAS-R9926, 1999, Amsterdam. Methods Appl. Anal., to appear.; N.M. Temme, J.L. López, The role of Hermite polynomials in asymptotics analysis, CWI Report MAS-R9926, 1999, Amsterdam. Methods Appl. Anal., to appear.
[33] Verma, A., Certain expansions of the basic hypergeometric functions, Math. Comp., 20, 151-157 (1966) · Zbl 0192.15104
[34] Wilson, J. A., Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal., 11, 690-701 (1980) · Zbl 0454.33007
[35] Zarzo, A.; Area, I.; Godoy, E.; Ronveaux, A., Results for some inversion problems for classical continuous and discrete orthogonal polynomials, J. Phys. A: Math. Gen., 30, L35-L40 (1997) · Zbl 0992.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.