×

Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 1513.65398

Summary: This research apparatuses an approximate spectral method for the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel (TFPIDE). The main idea of this approach is to set up a new Hilbert space that satisfies the initial and boundary conditions. The new spectral collocation approach is applied to obtain precise numerical approximation using new basis functions based on shifted first-kind Chebyshev polynomials (SCP1K). Furthermore, we support our study by a careful error analysis of the suggested shifted first-kind Chebyshev expansion. The results show that the new approach is very accurate and effective.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
35R09 Integro-partial differential equations
41A50 Best approximation, Chebyshev systems
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] Abd-Elhameed, WM, Novel expressions for the derivatives of sixth kind Chebyshev polynomials: spectral solution of the non-linear one-dimensional Burgers’ equation, Fractal Fract, 5, 2, 53 (2021) · doi:10.3390/fractalfract5020053
[2] Abd-Elhameed, WM; Alkhamisi, SO, New results of the fifth-kind orthogonal Chebyshev polynomials, Symmetry, 13, 12, 2407 (2021) · doi:10.3390/sym13122407
[3] Abd-Elhameed, WM; Youssri, YH, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput Appl Math, 37, 2897-2921 (2018) · Zbl 1404.65074 · doi:10.1007/s40314-017-0488-z
[4] Abd-Elhameed, WM; Youssri, YH, Sixth-kind Chebyshev spectral approach for solving fractional differential equations, Int J Nonlinear Sci Numer Simul, 20, 2, 191-203 (2019) · Zbl 07048618 · doi:10.1515/ijnsns-2018-0118
[5] Abd-Elhameed, WM; Doha, EH; Youssri, YH; Bassuony, MA, New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, Numer Methods Partial Differ Equ, 32, 6, 1553-1571 (2016) · Zbl 1355.65129 · doi:10.1002/num.22074
[6] Akram, T.; Ali, Z.; Rabiei, F.; Shah, K.; Kumam, P., A numerical study of nonlinear fractional order partial integro-differential equation with a weakly singular kernel, Fractal Fract, 5, 3, 85 (2021) · doi:10.3390/fractalfract5030085
[7] Atta, AG; Moatimid, GM; Youssri, YH, Generalized Fibonacci operational collocation approach for fractional initial value problems, Int J Appl Comput Math, 5, 1, 1-11 (2019) · Zbl 1411.11015 · doi:10.1007/s40819-018-0597-4
[8] Atta, AG; Moatimid, GM; Youssri, YH, Generalized Fibonacci operational tau algorithm for fractional Bagley-Torvik equation, Prog Fract Differ Appl, 6, 215-224 (2020) · doi:10.18576/pfda/060305
[9] Atta, AG; Abd-Elhameed, WM; Moatimid, GM; Youssri, YH, Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations, Appl Numer Math, 167, 237-256 (2021) · Zbl 1476.65235 · doi:10.1016/j.apnum.2021.05.010
[10] Atta AG, Abd-Elhameed WM, Moatimid GM, Youssri YH (2022a) A fast Galerkin approach for solving the fractional Rayleigh-Stokes problem via sixth-kind Chebyshev polynomials. Mathematics 10(11):1843
[11] Atta AG, Abd-Elhameed WM, Youssri YH (2022b) Shifted fifth-kind Chebyshev polynomials Galerkin-based procedure for treating fractional diffusion-wave equation. Int J Mod Phys C 33(08): 2250102
[12] Azimi R, Mohagheghy Nezhad M, Pourgholi R (2022c) Legendre spectral tau method for solving the fractional integro-differential equations with a weakly singular kernel. Glob Anal Discret Math. doi:10.22128/GADM.2022.490.1063
[13] Atta AG, Abd-Elhameed WM, Moatimid GM, Youssri YH (2022d) Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem. Math Sci. doi:10.1007/s40096-022-00460-6 · Zbl 1538.65410
[14] Guo, J.; Xu, D.; Qiu, W., A finite difference scheme for the nonlinear time-fractional partial integro-differential equation, Math Methods Appl Sci, 43, 6, 3392-3412 (2020) · Zbl 1452.65404 · doi:10.1002/mma.6128
[15] Koepf, W., Hypergeometric summation: an algorithmic approach to summation and special function identities (1998), Braunschweig: Vieweg, Braunschweig · Zbl 0909.33001 · doi:10.1007/978-3-322-92918-1
[16] Lima, N.; Matos, JAO; Matos, JMA; Vasconcelos, PB, A time-splitting tau method for PDE’s: a contribution for the spectral tau toolbox library, Math Comput Sci, 16, 1, 1-11 (2022) · Zbl 07538974 · doi:10.1007/s11786-022-00526-7
[17] Mahdy, AMS; Mohamed, MS; Al Amiri, AY; Gepreel, KA, Optimal control and spectral collocation method for solving smoking models, Intell Autom Soft Comput, 31, 2, 899-915 (2022) · doi:10.32604/iasc.2022.017801
[18] Masjed-Jamei M (2006) Some new classes of orthogonal polynomials and special functions: a symmetric generalization of Sturm-Liouville problems and its consequences. PhD thesis
[19] Moghaddam, BP; Machado, JAT, Time analysis of forced variable-order fractional van der pol oscillator, Eur Phys J Spec Top, 226, 16, 3803-3810 (2017) · doi:10.1140/epjst/e2018-00019-7
[20] Mostaghim, ZS; Moghaddam, BP; Haghgozar, HS, Numerical simulation of fractional-order dynamical systems in noisy environments, Comput Appl Math, 37, 5, 6433-6447 (2018) · Zbl 1474.65216 · doi:10.1007/s40314-018-0698-z
[21] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), San Diego: Elsevier, San Diego · Zbl 0924.34008
[22] Sanz-Serna, JM, A numerical method for a partial integro-differential equation, SIAM J Numer Anal, 25, 2, 319-327 (1988) · Zbl 0643.65098 · doi:10.1137/0725022
[23] Stewart, J., Single variable calculus: early transcendentals (2015), Boston: Cengage Learning, Boston
[24] Taghipour M, Aminikhah H (2022a) A fast collocation method for solving the weakly singular fractional integro-differential equation. Comput Appl Math 41(4):1-38 · Zbl 1499.65355
[25] Taghipour M, Aminikhah H (2022b) Pell collocation method for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. J Funct Spaces 2022, Article ID 8063888. doi:10.1155/2022/8063888 · Zbl 1502.65145
[26] Türk, Ö.; Codina, R., Chebyshev spectral collocation method approximations of the stokes eigenvalue problem based on penalty techniques, Appl Numer Math, 145, 188-200 (2019) · Zbl 1447.65125 · doi:10.1016/j.apnum.2019.06.005
[27] Wu, C.; Wang, Z., The spectral collocation method for solving a fractional integro-differential equation, AIMS Math, 7, 6, 9577-9587 (2022) · doi:10.3934/math.2022532
[28] Youssri YH, Abd-Elhameed WM, Atta AG (2022) Spectral Galerkin treatment of linear one-dimensional telegraph type problem via the generalized Lucas polynomials. Arab J Math 11(3): 601-615 · Zbl 1501.65081
[29] Zheng, X.; Qiu, W.; Chen, H., Three semi-implicit compact finite difference schemes for the nonlinear partial integro-differential equation arising from viscoelasticity, Int J Model Simul, 41, 3, 234-242 (2021) · doi:10.1080/02286203.2020.1720566
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.