×

Generalized Fibonacci operational collocation approach for fractional initial value problems. (English) Zbl 1411.11015

Summary: A numerical algorithm for solving multi-term fractional differential equations (FDEs) is established herein. We established and validated an operational matrix of fractional derivatives of the generalized Fibonacci polynomials (GFPs). The proposed numerical algorithm is mainly built on applying the collocation method to reduce the FDEs with its initial conditions into a system of algebraic equations in the unknown expansion coefficients. Output of the numerical results asserted that our developed algorithm is applicable, efficient and accurate.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
34A08 Fractional ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007) · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[2] Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001) · Zbl 0994.65128
[3] Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations, Algorithms for Engineers and Scientists. Springer, Berlin (2009) · Zbl 1172.65001 · doi:10.1007/978-90-481-2261-5
[4] Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364-2373 (2011) · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[5] Youssri, Y.H., Abd-Elhameed, W.M.: Numerical spectral Legendre-Galerkin algorithm for solving time fractional Telegraph equation. Rom. J. Phys. 63, 107 (2018)
[6] Abd-Elhameed, W.M., Youssri, Y.H.: Spectral Tau Algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol. 1-12 (2017) · Zbl 1384.41003
[7] Abd-Elhameed, W.M., Youssri, Y.H.: Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput. Appl. Math. 1-25 (2017) · Zbl 1404.65074
[8] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2017) · Zbl 1379.11001 · doi:10.1002/9781118742327
[9] Abd-Elhameed, W.M., Youssri, Y.H.: A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials. Entropy 18(10), 345 (2016) · doi:10.3390/e18100345
[10] Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the riesz fractional advection dispersion equation. IMA J. Appl. Math. 73(6), 850-872 (2008) · Zbl 1179.37073 · doi:10.1093/imamat/hxn033
[11] Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216(11), 3329-3334 (2010) · Zbl 1193.65158
[12] Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the riesz fractional derivative. J. Comput. Phys. 231(4), 1743-1750 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[13] Sweilam, N.H., Khader, M.M., Nagy, A.M.: Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 235(8), 2832-2841 (2011) · Zbl 1209.65089 · doi:10.1016/j.cam.2010.12.002
[14] Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1), 541-548 (2007) · Zbl 1122.65411
[15] Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abstract Appl. Anal. (2014), 626275 (2014) · Zbl 1318.65082
[16] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic, New York (1998) · Zbl 0924.34008
[17] Abd-Elhameed, W.M., Zeyada, N.A.: A generalization of generalized Fibonacci and generalized Pell numbers. Int. J. Math. Educ. Sci. Technol. 48(1), 102-107 (2017) · Zbl 1396.97004 · doi:10.1080/0020739X.2016.1170900
[18] Abd-Elhameed, W.M., Zeyada, N.A.: New identities involving generalized Fibonacci and generalized Lucas numbers. Indian J. Pure Appl. Math. 49(3), 527-537 (2018) · Zbl 1536.11028 · doi:10.1007/s13226-018-0282-7
[19] Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35(12), 5662-5672 (2011) · Zbl 1228.65126 · doi:10.1016/j.apm.2011.05.011
[20] Jameson, G.J.O.: The incomplete gamma functions. Math. Gaz. 100, 298-306 (2016) · Zbl 1384.33006 · doi:10.1017/mag.2016.67
[21] Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038-6051 (2014) · Zbl 1429.65170 · doi:10.1016/j.apm.2014.04.064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.