×

Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups. (English) Zbl 1511.20221

The authors introduce the notion of a crossed module over an inverse semigroup. With any crossed \(S\)-module \(A\), they associate a \(4\)-term exact sequence of inverse semigroups \(A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T\), which is called a crossed module extension of \(A\) by \(T\). It is shown that any such extension induces a \(T\)-module structure on \(A\), and equivalent extensions induce the same \(T\)-module structure on \(A\). Then a map from the set \(\mathcal{E}(T,A)\) of equivalence classes of crossed module extensions of a \(T\)-module \(A\) by \(T\) to the (Lausch) inverse semigroup cohomology group \(H^3(T^1,A^1)\) is constructed. Under this map, the set \(\mathcal{E}_\le(T,A)\) of equivalence classes of the so-called admissible crossed module extensions of \(A\) by \(T\) is mapped to the group of order-preserving cohomology \(H^3_\le(T^1,A^1)\).
For the converse map, with any cocycle from \(Z^3_\le(T^1,A^1)\) the authors associate a crossed module extension \(A \xrightarrow{i} N \xrightarrow{\beta} S \xrightarrow{\pi} T\) of \(A\) by \(T\), which gives rise to a map from \(H^3_\le(T^1,A^1)\) to \(\mathcal{E}(T,A)\). Here, \(S\) is the \(E\)-unitary cover of \(T\) through the free group \(FG(T)\) and \(N\) is a semilattice of groups which can be seen as a direct product of \(A\) and \(K=\pi^{-1}(E(T))\) in the appropriate category. The main result of the paper states that \(H^3_\le(T^1,A^1)\) is mapped bijectively onto \(\mathcal{E}_\le(T,A)\), whenever \(T\) is an \(F\)-inverse monoid.

MSC:

20M18 Inverse semigroups
20M50 Connections of semigroups with homological algebra and category theory

References:

[1] Brown, K. S., Cohomology of Groups, Graduate Texts in Mathematics, vol. 87 (1982), Springer-Verlag: Springer-Verlag New York-Berlin-Heidelberg · Zbl 0584.20036
[2] Clifford, A.; Preston, G., The Algebraic Theory of Semigroups, Math. Surveys and Monographs 7, vol. 2 (1967), Amer. Math. Soc.: Amer. Math. Soc. Providence, Rhode Island · Zbl 0178.01203
[3] Coudron, A., Sur les extensions de demi-groupes reciproques, Bull. Soc. R. Sci. Liège, 37, 409-419 (1968) · Zbl 0172.02402
[4] D’Alarcao, H., Idempotent-separating extensions of inverse semigroups, J. Aust. Math. Soc., 9, 211-217 (1969) · Zbl 0169.02804
[5] Dokuchaev, M.; Khrypchenko, M., Partial cohomology of groups, J. Algebra, 427, 142-182 (2015) · Zbl 1323.20052
[6] Dokuchaev, M.; Khrypchenko, M., Twisted partial actions and extensions of semilattices of groups by groups, Int. J. Algebra Comput., 27, 7, 887-933 (2017) · Zbl 1414.20022
[7] Dokuchaev, M.; Khrypchenko, M., Partial cohomology of groups and extensions of semilattices of abelian groups, J. Pure Appl. Algebra, 222, 2897-2930 (2018) · Zbl 1435.20058
[8] Dokuchaev, M.; Khrypchenko, M.; Makuta, M., The third partial cohomology group and existence of extensions of semilattices of groups by groups, Forum Math., 32, 5, 1297-1313 (2020) · Zbl 1530.20173
[9] Gerstenhaber, M., On the deformation of rings and algebras. II, Ann. Math. (2), 84, 1-19 (1966) · Zbl 0147.28903
[10] Holt, D. F., An interpretation of the cohomology groups \(H^n(G, M)\), J. Algebra, 60, 307-320 (1979) · Zbl 0699.20040
[11] Johannes, H., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helv., 55, 302-313 (1980) · Zbl 0443.18019
[12] Lausch, H., Cohomology of inverse semigroups, J. Algebra, 35, 273-303 (1975) · Zbl 0318.20032
[13] Lawson, M. V., Inverse Semigroups. The Theory of Partial Symmetries (1998), World Scientific: World Scientific Singapore-New Jersey-London-Hong Kong · Zbl 1079.20505
[14] MacLane, S., Cohomology theory in abstract groups. III. Operator homomorphisms of kernels, Ann. Math. (2), 50, 736-761 (1949) · Zbl 0039.25703
[15] Maclane, S., Homology (1963), Springer-Verlag: Springer-Verlag Berlin-Guttingen-Heidelberg · Zbl 0149.26203
[16] Martins-Ferreira, N.; Montoli, A.; Patchkoria, A.; Sobral, M., On the classification of Schreier extensions of monoids with non-abelian kernel, Forum Math., 32, 3, 607-623 (2020) · Zbl 1481.20216
[17] McAlister, D. B.; Reilly, N. R., E-unitary covers for inverse semigroups, Pac. J. Math., 68, 1, 161-174 (1977) · Zbl 0368.20043
[18] Patchkoria, A., Cohomology monoids of monoids with coefficients in semimodules. I, J. Homotopy Relat. Struct., 9, 1, 239-255 (2014) · Zbl 1333.18026
[19] Patchkoria, A., Cohomology monoids of monoids with coefficients in semimodules. II, Semigroup Forum, 97, 1, 131-153 (2018) · Zbl 1395.16052
[20] Petrich, M., Inverse Semigroups, Pure and Applied Mathematics (New York) (1984), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, A Wiley-Interscience Publication · Zbl 0546.20053
[21] Rédei, L., Die Verallgemeinerung der Schreierschen Erweiterungstheorie, Acta Sci. Math., 14, 252-273 (1952) · Zbl 0047.26602
[22] Schreier, O., Über die Erweiterung von Gruppen II, Abh. Math. Semin. Univ. Hamb., 4, 321-346 (1925)
[23] Schreier, O., Über die Erweiterung von Gruppen I, Monatshefte Math. Phys., 34, 165-180 (1926) · JFM 52.0113.04
[24] Whitehead, J. H.C., Combinatorial homotopy. II, Bull. Am. Math. Soc., 55, 453-496 (1949) · Zbl 0040.38801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.