×

On the classification of Schreier extensions of monoids with non-abelian kernel. (English) Zbl 1481.20216

Summary: We show that any regular (right) Schreier extension of a monoid \(M\) by a monoid \(A\) induces an abstract kernel \(\Phi\colon M\to\frac{\operatorname{End}(A)}{\operatorname{Inn}(A)}\). If an abstract kernel factors through \(\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)}\), where \(\operatorname{SEnd}(A)\) is the monoid of surjective endomorphisms of \(A\), then we associate to it an obstruction, which is an element of the third cohomology group of \(M\) with coefficients in the abelian group \(U(Z(A))\) of invertible elements of the center \(Z(A)\) of \(A\), on which \(M\) acts via \(\Phi\). An abstract kernel \(\Phi\colon M\to\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)}\) (resp. \(\Phi\colon M\to\frac{\operatorname{Aut}(A)}{\operatorname{Inn}(A)})\) is induced by a regular weakly homogeneous (resp. homogeneous) Schreier extension of \(M\) by \(A\) if and only if its obstruction is zero. We also show that the set of isomorphism classes of regular weakly homogeneous (resp. homogeneous) Schreier extensions inducing a given abstract kernel \(\Phi\colon M\to\frac{\operatorname{SEnd}(A)}{\operatorname{Inn}(A)} \) (resp. \(\Phi\colon M\to\frac{\operatorname{Aut}(A)}{\operatorname{Inn}(A)})\), when it is not empty, is in bijection with the second cohomology group of \(M\) with coefficients in \(U(Z(A))\).

MSC:

20M50 Connections of semigroups with homological algebra and category theory
18G50 Nonabelian homological algebra (category-theoretic aspects)
20J05 Homological methods in group theory

References:

[1] D. Bourn, Commutator theory, action groupoids, and an intrinsic Schreier-Mac Lane extension theorem, Adv. Math. 217 (2008), 2700-2735. · Zbl 1151.18016
[2] D. Bourn, Internal profunctors and commutator theory; applications to extensions classification and categorical Galois theory, Theory Appl. Categ. 24 (2010), 451-488. · Zbl 1239.18012
[3] D. Bourn and G. Janelidze, Centralizers in action accessible categories, Cahiers Top. Géom. Différ. Catég. 50 (2009), no. 3, 211-232. · Zbl 1187.18011
[4] D. Bourn, N. Martins-Ferreira, A. Montoli and M. Sobral, Schreier Split Epimorphisms in Monoids and in Semirings, Textos Mat. Sér. B 45, Universidade de Coimbra, Coimbra, 2013. · Zbl 1294.18001
[5] D. Bourn, N. Martins-Ferreira, A. Montoli and M. Sobral, Schreier split epimorphisms between monoids, Semigroup Forum 88 (2014), 739-752. · Zbl 1306.20067
[6] D. Bourn and A. Montoli, Intrinsic Schreier-Mac Lane extension theorem II: The case of action accessible categories, J. Pure Appl. Algebra 216 (2012), 1757-1767. · Zbl 1261.18012
[7] P. Carrasco and A. R. Garzón, Obstruction theory for extensions of categorical groups, Appl. Categ. Structures 12 (2004), 35-61. · Zbl 1047.18009
[8] A. S. Cigoli and G. Metere, Extension theory and the calculus of butterflies, J. Algebra 458 (2016), 87-119. · Zbl 1342.18027
[9] A. S. Cigoli, G. Metere and A. Montoli, Obstruction theory in action accessible categories, J. Algebra 385 (2013), 27-46. · Zbl 1285.18006
[10] S. Eilenberg and S. Mac Lane, Cohomology theory in abstract groups II. Group extensions with a non-abelian kernel, Ann. of Math. (2) 48 (1947), 326-341. · Zbl 0029.34101
[11] A. R. Garzón and H. Inassaridze, Semidirect products of categorical groups. Obstruction theory, Homology Homotopy Appl. 3 (2001), 111-138. · Zbl 0984.18005
[12] G. Hochschild, Cohomology and representation of associative algebras, Duke Math. J. 14 (1947), 921-948. · Zbl 0029.34201
[13] G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698-716. · Zbl 0055.26601
[14] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), 367-386. · Zbl 0993.18008
[15] S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316-345. · Zbl 0081.03303
[16] S. Mac Lane, Homology, Springer, Berlin, 1963. · Zbl 0133.26502
[17] N. Martins-Ferreira, A. Montoli and M. Sobral, Baer sums of special Schreier extensions of monoids, Semigroup Forum 93 (2016), 403-415. · Zbl 1398.20079
[18] N. Martins-Ferreira, A. Montoli and M. Sobral, The Nine Lemma and the push forward construction for special Schreier extensions of monoids with operations, Semigroup Forum 97 (2018), 325-352. · Zbl 1467.20097
[19] G. Orzech, Obstruction theory in algebraic categories. I, J. Pure Appl. Algebra 2 (1972), 287-314. · Zbl 0251.18016
[20] A. Patchkoria, Extensions of semimodules by monoids and their cohomological characterization (in Russian), Bull. Georgian Acad. Sci. 86 (1977), 21-24. · Zbl 0362.18022
[21] A. Patchkoria, Cohomology of monoids with coefficients in semimodules (in Russian), Bull. Georgian Acad. Sci. 86 (1977), 545-548. · Zbl 0362.18023
[22] A. Patchkoria, On Schreier extensions of semimodules (in Russian), PhD thesis, Tbilisi State University, 1979.
[23] A. Patchkoria, Cohomology monoids of monoids with coefficients in semimodules. II, Semigroup Forum 97 (2018), 131-153. · Zbl 1395.16052
[24] L. Rédei, Die Verallgemeinerung der Schreierischen Erweiterungstheorie, Acta Sci. Math. Szeged 14 (1952), 252-273. · Zbl 0047.26602
[25] O. Schreier, Über die Erweiterung von Gruppen. I, Monathsh. Math. 34 (1926), 165-180. · JFM 52.0113.04
[26] O. Schreier, Über die Erweiterung von Gruppen. II, Abh. Math. Semin. Univ. Hamburg 4 (1926), 276-280. · JFM 52.0113.04
[27] N. S. Tuen, Non-abelian extensions of monoids (in Russian), Bull. Georgian Acad. Sci. 84 (1976), 37-39. · Zbl 0371.20058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.