×

Stochastic resonance in a multistable system driven by Gaussian noise. (English) Zbl 1418.60091

Summary: Stochastic resonance (SR) is investigated in a multistable system driven by Gaussian white noise. Using adiabatic elimination theory and three-state theory, the signal-to-noise ratio (SNR) is derived. We find the effects of the noise intensity and the resonance system parameters \(b\), \(c\), and \(d\) on the SNR; the results show that SNR is a nonmonotonic function of the noise intensity; therefore, a multistable SR is found in this system, and the value of the peak changes with changing the system parameters.

MSC:

60H25 Random operators and equations (aspects of stochastic analysis)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, Journal of Physics A: Mathematical and General, 14, 11, L453-L457 (1981) · doi:10.1088/0305-4470/14/11/006
[2] Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A., Stochastic resonance in climatic change, Tellus, 34, 10-16 (1982)
[3] Yao, M.; Xu, W.; Ning, L., Stochastic resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated noises, Nonlinear Dynamics, 67, 1, 329-333 (2012) · Zbl 1243.82041 · doi:10.1007/s11071-011-9980-y
[4] Jia, Y.; Yu, S.-N.; Li, J.-R., Stochastic resonance in a bistable system subject to multiplicative and additive noise, Physical Review E, 62, 2, 1869-1878 (2000)
[5] Comte, J. C.; Morfu, S., Stochastic resonance: another way to retrieve subthreshold digital data, Physics Letters. A, 309, 1-2, 39-43 (2003) · doi:10.1016/s0375-9601(03)00166-x
[6] Lu, S. L.; He, Q. B.; Kong, F. R., Effects of underdamped step-varying second-order stochastic resonance for weak signal detection, Digital Signal Processing, 36, 93-103 (2015) · doi:10.1016/j.dsp.2014.09.014
[7] McNamara, B.; Wiesenfeld, K., Theory of stochastic resonance, Physical Review A, 39, 9, 4854-4869 (1989) · doi:10.1103/PhysRevA.39.4854
[8] Gammaitoni, L.; Marchesoni, F.; Santucci, S., Stochastic resonance as a bona fide resonance, Physical Review Letters, 74, 7, 1052-1055 (1995) · doi:10.1103/PhysRevLett.74.1052
[9] Lutz, E., Fractional Langevin equation, Physical Review E, 64, 5 (2001)
[10] Gandhimathi, V. M.; Rajasekar, S.; Kurths, J., Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators, Physics Letters A, 360, 2, 279-286 (2006) · Zbl 1236.70023 · doi:10.1016/j.physleta.2006.08.051
[11] Mankin, R.; Laas, K.; Laas, T.; Reiter, E., Stochastic multiresonance and correlation-time-controlled stability for a harmonic oscillator with fluctuating frequency, Physical Review E, 78, 3 (2008) · doi:10.1103/physreve.78.031120
[12] Saikia, S., The role of damping on Stochastic Resonance in a periodic potential, Physica A: Statistical Mechanics and Its Applications, 416, 411-420 (2014) · doi:10.1016/j.physa.2014.08.060
[13] Zhang, W.; Di, G. H., Stochastic resonance in a harmonic oscillator with damping trichotomous noise, Nonlinear Dynamics, 77, 4, 1589-1595 (2014) · doi:10.1007/s11071-014-1401-6
[14] Noguchi, T.; Torikai, H., Ghost stochastic resonance from an asynchronous cellular automaton neuron model, IEEE Transactions on Circuits and Systems II: Express Briefs, 60, 2, 111-115 (2013) · doi:10.1109/tcsii.2012.2235015
[15] Silva, I. G.; Rosso, O. A.; Vermelho, M. V.; Lyra, M. L., Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh-Nagumo neuron model, Communications in Nonlinear Science and Numerical Simulation, 22, 1-3, 641-649 (2015) · Zbl 1360.92032 · doi:10.1016/j.cnsns.2014.06.050
[16] Xu, Y.; Li, Y.; Li, J.; Feng, J.; Zhang, H., The phase transition in a bistable Duffing system driven by Lévy noise, Journal of Statistical Physics, 158, 1, 120-131 (2015) · Zbl 1317.82036 · doi:10.1007/s10955-014-1129-1
[17] He, M. J.; Xu, W.; Sun, Z. K., Dynamical complexity and stochastic resonance in a bistable system with time delay, Nonlinear Dynamics, 79, 3, 1787-1795 (2015) · doi:10.1007/s11071-014-1774-6
[18] Lang, R.-L.; Yang, L.; Qin, H.-L.; Di, G.-H., Trichotomous noise induced stochastic resonance in a linear system, Nonlinear Dynamics, 69, 3, 1423-1427 (2012) · doi:10.1007/s11071-012-0358-6
[19] Lindner, J. F.; Breen, B. J.; Wills, M. E.; Bulsara, A. R.; Ditto, W. L., Monostable array-enhanced stochastic resonance, Physical Review E, 63, 5 (2001)
[20] Siewe, M. S.; Kakmeni, F. M. M.; Tchawoua, C., Resonant oscillation and homoclinic bifurcation in a \(ϕ^6\)-Van der Pol oscillator, Chaos, Solitons & Fractals, 21, 4, 841-853 (2004) · Zbl 1046.70012 · doi:10.1016/j.chaos.2003.12.014
[21] Li, J.; Chen, X.; He, Z., Multi-stable stochastic resonance and its application research on mechanical fault diagnosis, Journal of Sound and Vibration, 332, 22, 5999-6015 (2013) · doi:10.1016/j.jsv.2013.06.017
[22] Han, D.; li, P.; An, S.; Shi, P., Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance, Mechanical Systems and Signal Processing, 70-71, 995-1010 (2016) · doi:10.1016/j.ymssp.2015.09.003
[23] Kish, L. B.; Khatri, S.; Sethuraman, S., Noise-based logic hyperspace with the superposition of \(N^2\) states in a single wire, Physics Letters A, 373, 22, 1928-1934 (2009) · Zbl 1229.81049 · doi:10.1016/j.physleta.2009.03.059
[24] Sokolov, I. M.; Ebeling, W.; Dybiec, B., Harmonic oscillator under Lévy noise: unexpected properties in the phase space, Physical Review E, 83, 4 (2011) · doi:10.1103/physreve.83.041118
[25] Jung, P.; Marchesoni, F., Energetics of stochastic resonance, Chaos, 21, 4 (2011) · Zbl 1317.34140 · doi:10.1063/1.3658869
[26] Fauve, S.; Heslot, F., Stochastic resonance in a bistable system, Physics Letters A, 97, 1-2, 5-7 (1983) · doi:10.1016/0375-9601(83)90086-5
[27] Lafuerza, L. F.; Colet, P.; Toral, R., Nonuniversal results induced by diversity distribution in coupled excitable systems, Physical Review Letters, 105, 8 (2010) · doi:10.1103/PhysRevLett.105.084101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.