×

The phase transition in a bistable Duffing system driven by Lévy noise. (English) Zbl 1317.82036

Summary: In this paper, the phase transition and mean first passage time (MFPT) induced by Lévy noise is investigated in a bistable Duffing system numerically. First, we obtain the stationary probability density functions as the criterion of phase transition through the qualitative changes of the shapes of stationary probability distribution. Then, the influences of Lévy noise parameters are discussed. The results indicate that the stability index, noise intensity and skewness parameter can lead to phase transition behaviors in bistable Duffing system. In addition, the MFPT is calculated for various Lévy parameters. Different effects among stability index, noise intensity and the skewness parameter on the phase transition and MFPT are observed. Furthermore, distinctions between Lévy noise and Gaussian noise are provided.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998) · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[2] Marathe, R., Bierbaum, V., Gomez, D., Klumpp, S.: Deterministic and stochastic descriptions of gene expression dynamics. J. Stat. Phys. 148, 608-627 (2012) · Zbl 1257.82116 · doi:10.1007/s10955-012-0459-0
[3] Zhang, X., Qian, H., Qian, M.: Stochastic theory of nonequilibrium steady states and its applications. Phys. Rep. 510, 1-86 (2012) · doi:10.1016/j.physrep.2011.09.002
[4] Leimkuhler, B., Noorizadeh, E., Theil, F.: A gentle stochastic thermostat for molecular dynamics. J. Stat. Phys. 135, 261-277 (2009) · Zbl 1179.82065 · doi:10.1007/s10955-009-9734-0
[5] Ghosh, P.K., Misko, V.R., Marchesoni, F., Nori, F.: Self-propelled Janus particles in a ratchet: numerical simulations. Phys. Rev. L. 110, 268301 (2013) · doi:10.1103/PhysRevLett.110.268301
[6] Kramer, B., Ohtsuki, T., Kettemann, S.: Random network models and quantum phase transitions in two dimensions. Phys. Rep. 417, 211-342 (2005) · doi:10.1016/j.physrep.2005.07.001
[7] Xu, Y., Feng, J., Li, J.J., Zhang, H.Q.: Lévy noise induced switch in the gene transcriptional regulatory system. Chaos 23, 013110 (2013) · doi:10.1063/1.4775758
[8] Ghosh, P.K., Barik, D., Ray, D.S.: Noise-induced transition in a quantum system. Phys. Lett. A 342, 12-21 (2005) · doi:10.1016/j.physleta.2005.04.097
[9] Cáceres, M.O.: Passage time statistics in a stochastic Verhulst model. J. Stat. Phys. 132, 487-500 (2008) · Zbl 1144.82050 · doi:10.1007/s10955-008-9554-7
[10] Ghosh, P.K., Bag, B.C., Ray, D.S.: Noised correlation-induced splitting of Kramers’ escape rate from a metastable state. J. Chem. Phys. 127, 044510 (2007) · doi:10.1063/1.2756042
[11] Ghosh, P.K., Bag, B.C., Ray, D.S.: Interference of stochastic resonances: splitting of Kramers’ rate. Phys. Rew. E 75, 032101 (2007) · doi:10.1103/PhysRevE.75.032101
[12] Nicolis, G., Nicolis, C., McKernan, D.: Stochastic resonance in chaotic dynamics. J. Stat. Phys. 70, 125-139 (1993) · Zbl 0943.37507 · doi:10.1007/BF01053958
[13] Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223-287 (1998) · doi:10.1103/RevModPhys.70.223
[14] Xu, Y., Mahmoud, G.M., Xu, W., Lei, Y.M.: Suppressing chaos of a complex Duffing’s system using a random phase. Chaos Soliton. Fract. 23, 265-273 (2005) · Zbl 1088.37519 · doi:10.1016/j.chaos.2004.04.014
[15] Ghosh, P.K., Marchesoni, F.: Brownian transport in narrow channels subject to transverse periodic force. Eur. Phys. J. Special Topics 187, 41-47 (2010) · doi:10.1140/epjst/e2010-01269-0
[16] Bag, B.C.: Colored non-Gaussian noise driven systems: mean first passage time. Eur. Phys. J. B 34, 115-118 (2003) · doi:10.1140/epjb/e2003-00202-8
[17] Dybiec, B., Gudowska-Nowak, E., Hänggi, P.: Escape driven by alpha-stable white noises. Phys. Rev. E 75, 021109 (2007) · doi:10.1103/PhysRevE.75.021109
[18] Chaudhuri, J.R., Chattopadhyay, S., Banik, S.K.: Multiplicative cross-correlated noise induced escape rate from a metastable state. J. Chem. Phys. 128, 154513 (2008) · doi:10.1063/1.2901044
[19] Øksendal, B.: Stochastic Differential Equations. Springer, New York (2003) · Zbl 1025.60026 · doi:10.1007/978-3-642-14394-6
[20] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004) · Zbl 1073.60002 · doi:10.1017/CBO9780511755323
[21] Comtet, A., Texier, C., Tourigny, Y.: Supersymmetric quantum mechanics with Lévy disorder in one dimension. J. Stat. Phys. 145, 1291-1323 (2011) · Zbl 1268.82012 · doi:10.1007/s10955-011-0351-3
[22] Bartumeus, F., Catalan, J., Fulco, U.L., Lyra, M.L., Viswanathan, G.M.: Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys. Rev. Lett. 88, 097901 (2002) · doi:10.1103/PhysRevLett.88.097901
[23] West, B.J., Deering, W.: Fractal physiology for physicists: Lévy statistics. Phys. Rep. 246, 1-100 (1994) · doi:10.1016/0370-1573(94)00055-7
[24] Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lévy Flights and Related Topics in Physics. Springer, Berlin (1995) · Zbl 0823.00016 · doi:10.1007/3-540-59222-9
[25] Ditlevsen, P.D.: Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 26, 1441-1444 (1999) · doi:10.1029/1999GL900252
[26] Ai, B.Q., He, Y.F.: Directed transport driven by Lévy flights coexisting with sub-diffusion. J. Chem. Phys. 132, 094504 (2010) · doi:10.1063/1.3327842
[27] Imkeller, P., Pavlyukevich, I., Stauch, M.: First exit times of non-linear dynamical systems in R \[^d\] d perturbed by multifractal Lévy noise. J. Stat. Phys. 141, 94-119 (2010) · Zbl 1202.37074 · doi:10.1007/s10955-010-0041-6
[28] Xu, Y., Feng, J., Li, J.J., Zhang, H.Q.: Stochastic bifurcation for a tumor-immune system with symmetric Lévy noise. Phys. A 392, 4739-4748 (2013) · Zbl 1395.37058 · doi:10.1016/j.physa.2013.06.010
[29] Chechkin, A., Metzler, R., Gonchar, V., Klafter, J., Tanatarov, L.: First passage and arrival time densities for Lévy flights and the failure of the method of images. J. Phys. A 36, 537-544 (2003) · Zbl 1049.60090 · doi:10.1088/0305-4470/36/41/L01
[30] Dybiec, B., Gudowska-Nowak, E.: Lévy stable noise-induced transitions: Stochastic resonance, resonant activation and dynamic hysteresis. J. Stat. Mech. 2009, P05004 (2009) · Zbl 1459.82226
[31] Chechkin, A., Gonchar, V., Klafter, J., Metzler, R., Tanatarov, L.: Stationary states of non-linear oscillators driven by Lévy noise. Chem. Phys. 284, 233-251 (2008) · doi:10.1016/S0301-0104(02)00551-7
[32] Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71, 340-344 (1976) · Zbl 0341.65003 · doi:10.1080/01621459.1976.10480344
[33] Weron, R.: On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Stat. Probab. Lett. 28, 165-171 (1996) · Zbl 0856.60022 · doi:10.1016/0167-7152(95)00113-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.