×

Gravitational wave detection by interferometry (ground and space). (English) Zbl 1316.83010

Summary: Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future ”third generation” gravitational-wave detectors, such as the Einstein Telescope (ET), will be discussed.
Update to the author’s paper [Zbl 0944.83005]: For the update the author list has changed to be Matthew Pitkin, Stuart Reid, Sheila Rowan and Jim Hough. There have been minor updates to Sections 1, 2 and 3; major updates to Sections 4 and 5; Section 6 has been renamed and includes entirely new material on the operation of, and results from, the first generation of gravitational wave detectors and upgrades that are under way; and Section 7 also includes major updates about the status of LISA. The number of references has increased from 110 to 324.

MSC:

83-05 Experimental work for problems pertaining to relativity and gravitational theory
83B05 Observational and experimental questions in relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory

Citations:

Zbl 0944.83005

Software:

NINJA

References:

[1] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run”, Phys. Rev. D, 81, 102001, (2010). [DOI], [arXiv:1002.1036 [gr-qc]]. (Cited on page 37.)
[2] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “First Search for Gravitational Waves from the Youngest Known Neutron Star”, Astrophys. J., 722, 1504-1513, (2010). [DOI], [arXiv:1006.2535 [gr-qc]]. (Cited on page 43.)
[3] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors”, Class. Quantum Grav., 27, 173001, (2010). [DOI], [arXiv:1003.2480 [astro-ph.HE]]. (Cited on pages 28, 29, and 44.)
[4] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO’s Fifth and Virgo’s First Science Run”, Astrophys. J., 715, 1453-1461, (2010). [DOI], [arXiv:1001.0165 [astro-ph.HE]]. (Cited on page 39.)
[5] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1”, Phys. Rev. D, 82, 102001, (2010). [DOI]. (Cited on page 38.)
[6] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Beating the spin-down limit on gravitational wave emission from the Vela pulsar”, arXiv, e-print, (2011). [arXiv:1104.2712 [astro-ph.HE]]. (Cited on page 43.)
[7] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for Gravitational Wave Bursts from Six Magnetars”, Astrophys. J. Lett., 734, L35, (2011). [DOI], [arXiv:1011.4079 [astro-ph.HE]]. (Cited on page 40.)
[8] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar”, Phys. Rev. D, 83, 042001, (2011). [DOI], [arXiv:1011.1357]. (Cited on page 40.)
[9] Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for gravitational waves from binary black hole inspiral, merger and ringdown”, Phys. Rev. D, 83, 122005, (2011). [DOI], [arXiv:1102.3781 [gr-qc]]. (Cited on page 38.)
[10] Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of first LIGO science data for stochastic gravitational waves”, Phys. Rev. D, 69, 122004, (2004). [DOI], [gr-qc/0312088]. (Cited on page 43.)
[11] Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of LIGO data for gravitational waves from binary neutron stars”, Phys. Rev. D, 69, 122001, (2004). [DOI], [gr-qc/0308069]. (Cited on page 37.)
[12] Abbott, B. et al. (LIGO Scientific Collaboration), “Detector description and performance for the first coincidence observations between LIGO and GEO”, Nucl. Instrum. Methods A, 517, 154-179, (2004). [DOI], [gr-qc/0308043]. (Cited on pages 30 and 32.)
[13] Abbott, B. et al. (LIGO Scientific Collaboration), “First upper limits from LIGO on gravitational wave bursts”, Phys. Rev. D, 69, 102001, (2004). [DOI]. (Cited on page 36.)
[14] Abbott, B. et al. (LIGO Scientific Collaboration), “Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors”, Phys. Rev. D, 69, 082004, (2004). [DOI], [gr-qc/0308050]. (Cited on page 41.)
[15] Abbott, B. et al. (LIGO Scientific Collaboration), “First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform”, Phys. Rev. D, 72, 102004, (2005). [DOI], [gr-qc/0508065]. (Cited on page 41.)
[16] Abbott, B. et al. (LIGO Scientific Collaboration), “Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data”, Phys. Rev. Lett., 94, 181103, (2005). [DOI], [gr-qc/0410007]. (Cited on page 41.)
[17] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors”, Phys. Rev. D, 72, 042002, (2005). [DOI], [gr-qc/0501068]. (Cited on page 39.)
[18] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from galactic and extra-galactic binary neutron stars”, Phys. Rev. D, 72, 082001, (2005). [DOI], [gr-qc/0505041]. (Cited on pages 29, 37, and 38.)
[19] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from primordial black hole binary coalescences in the galactic halo”, Phys. Rev. D, 72, 082002, (2005). [DOI], [gr-qc/0505042]. (Cited on page 38.)
[20] Abbott, B. et al. (LIGO Scientific Collaboration and TAMA Collaboration), “Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts”, Phys. Rev. D, 72, 122004, (2005). [DOI]. (Cited on page 36.)
[21] Abbott, B. et al. (LIGO Scientific Collaboration), “Upper Limits on a Stochastic Background of Gravitational Waves”, Phys. Rev. Lett., 95, 221101, (2005). [DOI], [astro-ph/0507254]. (Cited on page 43.)
[22] Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave bursts in LIGO’s second science run”, Phys. Rev. D, 72, 062001, (2005). [DOI]. (Cited on pages 30 and 36.)
[23] Abbott, B. et al. (LIGO Scientific Collaboration and TAMA Collaboration), “Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries”, Phys. Rev. D, 73, 102002, (2006). [DOI], [gr-qc/0512078]. (Cited on page 38.)
[24] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from binary black hole inspirals in LIGO data”, Phys. Rev. D, 73, 062001, (2006). [DOI], [gr-qc/0509129]. (Cited on pages 36, 37, and 38.)
[25] Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home S3 Analysis Summary”, project homepage, UW-Milwaukee, (2007). URL (accessed 3 October 2008): http://einstein.phys.uwm.edu/FinalS3Results/. (Cited on page 42.)
[26] Abbott, B. et al. (LIGO Scientific Collaboration and ALLEGRO Collaboration), “First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds”, Phys. Rev. D, 76, 022001, (2007). [DOI], [gr-qc/0703068]. (Cited on page 44.)
[27] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in LIGO data from the fourth science run”, Class. Quantum Grav., 24, 5343-5369, (2007). [DOI], [arXiv:0704.0943]. (Cited on pages 32 and 37.)
[28] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO”, Phys. Rev. D, 76, 062003, (2007). [DOI], [astro-ph/0703419]. (Cited on page 39.)
[29] Abbott, B. et al. (LIGO Scientific Collaboration), “Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run”, Phys. Rev. D, 76, 082001, (2007). [DOI]. (Cited on page 41.)
[30] Abbott, B. et al. (LIGO Scientific Collaboration), “Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory”, Astrophys. J., 659, 918-930, (2007). [DOI], [astro-ph/0608606]. (Cited on page 44.)
[31] Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limit map of a background of gravitational waves”, Phys. Rev. D, 76, 082003, (2007). [DOI], [astro-ph/0703234]. (Cited on pages 42 and 44.)
[32] Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave emission from 78 radio pulsars”, Phys. Rev. D, 76, 042001, (2007). [DOI], [gr-qc/0702039]. (Cited on page 42.)
[33] Abbott, B. et al. (LIGO Scientific Collaboration), “All-sky search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 77, 022001, (2008). [DOI], [arXiv:0708.3818]. (Cited on pages 41 and 42.)
[34] Abbott, B. et al. (LIGO Scientific Collaboration), “Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar”, Astrophys. J. Lett., 683, L45-L49, (2008). [DOI], [arXiv:0805.4758]. (Cited on page 42.)
[35] Abbott, B. et al. (LIGO Scientific Collaboration), “First joint search for gravitational-wave bursts in LIGO and GEO 600 data”, Class. Quantum Grav., 25, 245008, (2008). [DOI], [arXiv:0807.2834]. (Cited on page 37.)
[36] Abbott, B. et al. (LIGO Scientific Collaboration), “Implications for the Origin of GRB 070201 from LIGO Observations”, Astrophys. J., 681, 1419-1430, (2008). [DOI], [arXiv:0711.1163]. (Cited on page 39.)
[37] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for Gravitational-Wave Bursts from Soft Gamma Repeaters”, Phys. Rev. Lett., 101, 211102, (2008). [DOI], [arXiv:0808.2050]. (Cited on page 40.)
[38] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs”, Phys. Rev. D, 77, 062004, (2008). [DOI], [arXiv:0709.0766]. (Cited on page 39.)
[39] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from binary inspirals in S3 and S4 LIGO data”, Phys. Rev. D, 77, 062002, (2008). [DOI]. (Cited on pages 29 and 38.)
[40] Abbott, B. et al. (LIGO Scientific Collaboration), “Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals”, Phys. Rev. D, 78, 042002, (2008). [DOI], [arXiv:0712.2050]. (Cited on page 38.)
[41] Abbott, B. et al. (LIGO Scientific Collaboration), “All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data”, Phys. Rev. Lett., 102, 111102, (2009). [DOI], [arXiv:0810.0283]. (Cited on page 42.)
[42] Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home search for periodic gravitational waves in early S5 LIGO data”, Phys. Rev. D, 80, 042003, (2009). [DOI], [arXiv:0905.1705]. (Cited on page 42.)
[43] Abbott, B. et al. (LIGO Scientific Collaboration), “Einstein(AT)Home search for periodic gravitational waves in LIGO S4 data”, Phys. Rev. D, 79, 022001, (2009). [DOI], [arXiv:0804.1747]. (Cited on page 42.)
[44] Abbott, B. et al. (LIGO Scientific Collaboration), “First LIGO search for gravitational wave bursts from cosmic (super)strings”, Phys. Rev. D, 80, 062002, (2009). [DOI], [arXiv:0904.4718 [astro-ph.CO]]. (Cited on page 38.)
[45] Abbott, B. et al. (LIGO Scientific Collaboration), “LIGO: the Laser Interferometer Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901, (2009). [DOI]. (Cited on pages 5 and 32.)
[46] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational-wave bursts in the first year of the fifth LIGO science run”, Phys. Rev. D, 80, 102001, (2009). [DOI], [arXiv:0905.0020 [gr-qc]]. (Cited on page 37.)
[47] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data”, Phys. Rev. D, 80, 062001, (2009). [DOI], [arXiv:0905.1654]. (Cited on page 38.)
[48] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from low mass binary coalescences in the first year of LIGO’s S5 data”, Phys. Rev. D, 79, 122001, (2009). [DOI], [arXiv:0901.0302]. (Cited on page 38.)
[49] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO’s fifth science run”, Phys. Rev. D, 80, 047101, (2009). [DOI], [arXiv:0905.3710]. (Cited on page 38.)
[50] Abbott, B. et al. (LIGO Scientific Collaboration), “Search for high frequency gravitational-wave bursts in the first calendar year of LIGO’s fifth science run”, Phys. Rev. D, 80, 102002, (2009). [DOI], [arXiv:0904.4910 [gr-qc]]. (Cited on page 37.)
[51] Abbott, B. et al. (LIGO Scientific Collaboration), “Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm”, Astrophys. J. Lett., 701, L68-L74, (2009). [DOI], [arXiv:0905.0005]. (Cited on page 40.)
[52] Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “An upper limit on the stochastic gravitational-wave background of cosmological origin”, Nature, 460, 990-994, (2009). [DOI]. (Cited on page 44.)
[53] Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search For Gravitational-wave Bursts Associated with Gamma-ray Bursts using Data from LIGO Science Run 5 and Virgo Science Run 1”, Astrophys. J., 715, 1438-1452, (2010). [DOI6], [arXiv:0908.3824 [astro-ph.HE]]. (Cited on page 39.)
[54] Abbott, B. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data”, Astrophys. J., 713, 671-685, (2010). [DOI], [arXiv:0909.3583 [astro-ph.HE]]. (Cited on page 43.)
[55] Abbott, R. et al., “Seismic isolation for Advanced LIGO”, Class. Quantum Grav., 19, 1591-1597, (2002). [DOI]. (Cited on page 13.)
[56] Abramovici, A. et al., “Improved sensitivity in a gravitational wave interferometer and implications for LIGO”, Phys. Lett. A, 218, 157-163, (1996). [DOI]. (Cited on page 27.)
[57] Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo detector during its second science run”, Class. Quantum Grav., 28, 025005, (2011). [DOI], [arXiv:1009.5190 [gr-qc]]. (Cited on page 35.)
[58] Acernese, F.; VIRGO Collaboration; etal.; Hough, J. (ed.); Sanders, GH (ed.), Status of VIRGO, No. 5500, 58-69 (2004), Bellingham, WA
[59] Acernese, F. et al. (VIRGO Collaboration), “Status of Virgo”, Class. Quantum Grav., 22, S869-S880, (2005). [DOI]. (Cited on page 34.)
[60] Acernese, F. et al. (VIRGO Collaboration), “The status of VIRGO”, Class. Quantum Grav., 23, S63-S69, (2006). [DOI]. (Cited on page 34.)
[61] Acernese, F. et al. (Virgo Collaboration), “Status of Virgo detector”, Class. Quantum Grav., 24, S381-S388, (2007). [DOI]. (Cited on pages 5 and 34.) · Zbl 1206.83052
[62] Acernese, F. et al. (Virgo Collaboration), Advanced Virgo Preliminary Design, VIR-089A-08, (Virgo, Cascina, 2008). URL (accessed 16 February 2011): https://tds.ego-gw.it/ql/?c=2110. (Cited on pages 44 and 45.)
[63] Acernese, F. et al. (Virgo Collaboration), “Search for gravitational waves associated with GRB 050915a using the Virgo detector”, Class. Quantum Grav., 25, 225001, (2008). [DOI], [ADS], [arXiv:0803.0376 [gr-qc]]. (Cited on page 39.)
[64] Acernese, F. et al. (Virgo Collaboration), “Virgo status”, Class. Quantum Grav., 25, 184001, (2008). [DOI]. (Cited on page 34.)
[65] Adhikari, R., Fritschel, P. and Waldman, S., Enhanced LIGO, LIGO-T060156-01, (LIGO, Pasadena, CA, 2006). URL (accessed 10 November 2008): http://www.ligo.caltech.edu/docs/T/T060156-01.pdf. (Cited on page 32.)
[66] “‘Advanced LIGO”, project homepage, Massachusetts Institute of Technology. URL (accessed 19 November 2008): http://www.advancedligo.mit.edu/. (Cited on page 44.)
[67] “‘Advanced Virgo”, project homepage, INFN. URL (accessed 16 February 2011): http://www.virgo.infn.it/advirgo/. (Cited on pages 44 and 45.)
[68] Ageev, A., Palmer, B.C., Felice, A.D., Penn, S.D. and Saulson, P.R., “Very high quality factor measured in annealed fused silica”, Class. Quantum Grav., 21, 3887-3892, (2004). [DOI]. (Cited on page 17.) · Zbl 1119.83309
[69] Agresti, J.; Castaldi, G.; DeSalvo, R.; Galdi, V.; Pierro, V.; Pinto, IM; Ellison, MJ (ed.), Optimized multilayer dielectric mirror coatings for gravitational wave interferometers, No. 6286 (2006), Bellingham, WA
[70] Aguiar, O.D. et al., “The Brazilian gravitational wave detector Mario Schenberg: status report”, Class. Quantum Grav., 23, S239-S244, (2006). [DOI]. (Cited on pages 5 and 10.)
[71] Akutsu, T. et al., “Search for continuous gravitational waves from PSR J0835−4510 using CLIO data”, Class. Quantum Grav., 25, 184013, (2008). [DOI]. (Cited on page 46.)
[72] Akutsu, T. et al. (TAMA Collaboration), “Results of the search for inspiraling compact star binaries from TAMA300’s observation in 2000-2004”, Phys. Rev. D, 74, 122002, (2006). [DOI]. (Cited on page 30.)
[73] Allen, B. and Romano, J.D., “Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities”, Phys. Rev. D, 59, 102001, (1999). [DOI], [gr-qc/9710117]. (Cited on page 43.)
[74] Allen, B. et al., “Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy”, Phys. Rev. Lett., 83, 1498-1501, (1999). [DOI], [gr-qc/9903108]. (Cited on page 35.)
[75] Alnis, J., Matveev, A., Kolachevsky, N., Udem, T. and Hänsch, T.W., “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities”, Phys. Rev. A, 77, 053809, (2008). [DOI]. (Cited on page 23.)
[76] Amaldi, E. et al., “First gravity wave coincident experiment between resonant cryogenic detectors: Louisiana-Rome-Stanford”, Astron. Astrophys., 216, 325-332, (1989). [ADS]. (Cited on page 5.)
[77] Anderson, W.G., Brady, P.R., Creighton, J.D. and Flanagan, É.É., “Excess power statistic for detection of burst sources of gravitational radiation”, Phys. Rev. D, 63, 042003, (2001). [DOI], [gr-qc/0008066]. (Cited on page 36.)
[78] Ando, M. (TAMA Collaboration), “Current status of TAMA”, Class. Quantum Grav., 19, 1409-1419, (2002). [DOI]. (Cited on page 5.)
[79] Ando, M. et al. (TAMA Collaboration), “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950-3954, (2001). [DOI], [astro-ph/0105473]. (Cited on page 30.)
[80] Ando, M. et al. (DECIGO Collaboration), “DECIGO pathfinder”, Class. Quantum Grav., 26, 094019, (2009). [DOI]. (Cited on page 51.)
[81] Arai, K.; TAMA Collaboration; etal.; Kajita, T. (ed.); Asaoka, Y. (ed.); Kawachi, A. (ed.); Matsubara, Y. (ed.); Sasaki, M. (ed.), Report on the Observation Run of TAMA300 in the Spring of 2003, No. 41, 3085-3088 (2003), Tokyo
[82] Arai, K. et al. (TAMA Collaboration and CLIO Collaboration and LCGT Collaboration), “Status of Japanese gravitational wave detectors”, Class. Quantum Grav., 26, 204020, (2009). [DOI]. (Cited on page 45.)
[83] Araya, A., Mio, N., Tsubono, K., Suehiro, K., Telada, S., Ohashi, M. and Fujimoto, M.-K., “Optical mode cleaner with suspended mirrors”, Appl. Opt., 36(7), 1446-1453, (1997). [DOI]. (Cited on pages 24 and 27.)
[84] Armano, M. et al., “LISA Pathfinder: the experiment and the route to LISA”, Class. Quantum Grav., 26, 094001, (2009). [DOI]. (Cited on page 51.)
[85] Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (accessed 14 February 2011): http://www.livingreviews.org/lrr-2006-1. (Cited on page 6.) · Zbl 1255.83003
[86] Aso, Y., Márka, Z., Finley, C., Dwyer, J., Kotake, K. and Márka, S., “Search method for coincident events from LIGO and IceCube detectors”, Class. Quantum Grav., 25, 114039, (2008). [DOI], [arXiv:0711.0107]. (Cited on page 40.)
[87] “‘Astro2010: The Astronomy and Astrophysics Decadal Survey”, project homepage, The National Acadamies. URL (accessed 14 December 2010): http://sites.nationalacademies.org/bpa/BPA_049810. (Cited on page 51.)
[88] “‘AURIGA Home Page”, project homepage, INFN. URL (accessed 14 January 2008): http://www.auriga.lnl.infn.it. (Cited on pages 5, 6, and 10.)
[89] Aylott, B. et al., “Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project”, Class. Quantum Grav., 26, 165008, (2009). [DOI], [arXiv:0901.4399]. (Cited on page 37.)
[90] Baggio, L. et al. (AURIGA Collaboration and LIGO Scientific Collaboration), “A joint search for gravitational wave bursts with AURIGA and LIGO”, Class. Quantum Grav., 25, 095004, (2008). [DOI]. (Cited on page 37.)
[91] Barriga, P. et al., “AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors”, Class. Quantum Grav., 27, 084005, (2010). [DOI]. (Cited on page 45.)
[92] Bartusiak, M., Einstein’s Unfinished Symphony: Listening to the Sounds of Space-Time, (Joseph Henry Press, Washington, DC, 2000). [Google Books]. (Cited on page 7.) · Zbl 0967.83500
[93] Beccaria, M. et al., “Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity”, Class. Quantum Grav., 15, 3339-3362, (1998). [DOI]. (Cited on pages 13 and 15.)
[94] Beker, M.G. et al., “Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise”, Gen. Relativ. Gravit., 43, 623-656, (2011). [DOI]. (Cited on page 15.)
[95] Billing, H., Maischberger, K., Rüdiger, A., Schilling, R., Schnupp, L. and Winkler, W., “An argon laser interferometer for the detection of gravitational radiation”, J. Phys. E: Sci. Instrum., 12, 1043-1050, (1979). [DOI]. (Cited on pages 5 and 20.)
[96] Blair, D.G., ed., The Detection of Gravitational Waves, (Cambridge University Press, Cambridge, New York, 1991). (Cited on page 7.)
[97] “‘BOINC: Open-source software for volunteer computing and grid computing”, project homepage, University of California. URL (accessed 3 October 2008): http://boinc.berkeley.edu/. (Cited on page 42.)
[98] Braccini, S. et al., “An improvement in the VIRGO Super Attenuator for interferometric detection of gravitational waves: The use of a magnetic antispring”, Rev. Sci. Instrum., 64, 310-313, (1993). [DOI]. (Cited on page 15.)
[99] Braccini, S. et al., “Seismic vibrations mechanical filters for the gravitational waves detector VIRGO”, Rev. Sci. Instrum., 67, 2899-2902, (1996). [DOI]. (Cited on page 13.)
[100] Brady, P.R. and Creighton, T., “Searching for periodic sources with LIGO. II. Hierarchical searches”, Phys. Rev. D, 61, 082001, (2000). [DOI], [gr-qc/9812014]. (Cited on page 41.)
[101] Braginsky, V.B. and Gorodetsky, M.L., “Optical bars in gravitational wave antenna”, Phys. Lett. A, 232, 340-348, (1997). [DOI]. (Cited on page 20.)
[102] Braginsky, V.B., Gorodetsky, M.L. and Vyatchanin, S.P., “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae”, Phys. Lett. A, 264, 1-10, (1999). [DOI], [cond-mat/9912139]. (Cited on page 16.)
[103] Braginsky, V.B. and Khalili, F.Y., “Nonlinear meter for the gravitational wave antenna”, Phys. Lett. A, 218, 167-174, (1996). [DOI]. (Cited on page 20.)
[104] Braginsky, V.B., Mitrofanov, V.P. and Panov, V.I., Systems with Small Dissipation, (University of Chicago Press, Chicago, 1985). (Cited on page 17.)
[105] Braginsky, V.B., Mitrofanov, V.P. and Tokmakov, K.V., “Energy dissipation in the pendulum mode of the test mass suspension of a gravitational wave antenna”, Phys. Lett. A, 218, 164-166, (1996). [DOI]. (Cited on page 17.)
[106] Braginsky, V.B., Strigin, S.E. and Vyatchanin, S.P., “Parametric oscillatory instability in Fabry-Perot interferometer”, Phys. Lett. A, 287, 331-338, (2001). [DOI]. (Cited on page 26.)
[107] Cadonati, L., “Coherent waveform consistency test for LIGO burst candidates”, Class. Quantum Grav., 21, S1695-S1703, (2004). [DOI]. (Cited on page 36.) · Zbl 1170.83351
[108] Carilli, C. and Rawlings, S., eds., Science with the Square Kilometre Array, New Astron. Rev., 48, (Elsevier, Amsterdam, 2004). Online version (accessed 15 June 2011): http://www.skads-eu.org/p/SKA_SciBook.php. (Cited on page 6.)
[109] Caves, C.M., “Quantum-mechanical radiation pressure fluctuations in an interferometer”, Phys. Rev. Lett., 45, 75-79, (1980). [DOI]. (Cited on pages 18 and 19.)
[110] Caves, C.M., “Quantum-mechanical noise in an interferometer”, Phys. Rev. D, 23, 1693-1708, (1981). [DOI]. (Cited on pages 18 and 19.)
[111] Chassande-Mottin, E. (Ligo Scientific Collaboration and Virgo Collaboration), “Joint searches for gravitational waves and high-energy neutrinos”, J. Phys.: Conf. Ser., 243, 012002, (2010). [DOI]. (Cited on page 40.)
[112] Chatterji, S., Blackburn, L., Martin, G. and Katsavounidis, E., “Multiresolution techniques for the detection of gravitational-wave bursts”, Class. Quantum Grav., 21, S1809-S1818, (2004). [DOI]. (Cited on page 36.) · Zbl 1070.83513
[113] Chatterji, S., Lazzarini, A., Stein, L., Sutton, P.J., Searle, A. and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005, (2006). [DOI], [gr-qc/0605002]. (Cited on page 36.)
[114] Chelkowski, S., Vahlbruch, H., Danzmann, K. and Schnabel, R., “Coherent control of broadband vacuum squeezing”, Phys. Rev. A, 75, 043814, (2007). [DOI]. (Cited on page 34.)
[115] Ciufolini, I. and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), 19-23 March 1996, Edoardo Amaldi Foundation Series, 2, (World Scientific, Singapore; River Edge, NJ, 1997). (Cited on page 8.)
[116] Corbitt, T. and Mavalvala, N., “Review: Quantum noise in gravitational-wave interferometers”, J. Opt. B: Quantum Semiclass. Opt., 65, S675-S683, (2004). [DOI]. (Cited on page 20.)
[117] Corbitt, T. and Mavalvala, N., “Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity”, Phys. Rev. A, 74, 021802, (2006). [DOI]. (Cited on page 19.)
[118] “‘Cosmic Vision L-class missions presentation event 2011”, project homepage, European Space Agency, (2011). URL (accessed 31 May 2011): http://sci.esa.int/Lmissions2011. (Cited on pages 5, 48, and 51.)
[119] Coward, D.M. et al., “The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education”, Publ. Astron. Soc. Australia, 27, 331-339, (2010). [DOI], [arXiv:1006.3933 [astro-ph.IM]]. (Cited on page 40.)
[120] Cregut, O. et al., “18 W single-frequency operation of an injection-locked, CW, Nd:YAG laser”, Phys. Lett. A, 140, 294-298, (1989). [DOI]. (Cited on page 25.)
[121] Crooks, D.R.M. et al., “Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors”, Class. Quantum Grav., 19, 883-896, (2002). [DOI]. (Cited on page 16.) · Zbl 0997.83506
[122] Crowder, J. and Cornish, N.J., “Beyond LISA: Exploring future gravitational wave missions”, Phys. Rev. D, 72, 083005, (2005). [DOI], [gr-qc/0506015]. (Cited on page 52.)
[123] Cunningham, L. et al., “Re-evaluation of the mechanical loss factor of hydroxide-catalysis bonds and its significance for the next generation of gravitational wave detectors”, Phys. Lett. A, 374, 3993-3998, (2010). [DOI]. (Cited on page 17.)
[124] Cutler, C. and Holz, D.E., “Ultrahigh precision cosmology from gravitational waves”, Phys. Rev. D, 80, 104009, (2009). [DOI], [arXiv:0906.3752]. (Cited on page 52.)
[125] Danzmann, K. et al. (LISA Study Team), “LISA: Laser Interferometer Space Antenna for Gravitational Wave Measurements”, Class. Quantum Grav., 13, A247-A250, (1996). [DOI]. (Cited on pages 5, 10, and 48.)
[126] Decher, RJ; Randall, L.; Bender, PL; Faller, JE; Cuneo, WJ (ed.), Design Aspects of a Laser Gravitational Wave Detector in Space, No. 228, 149-153 (1980), Bellingham, WA
[127] DeSalvo, R.; etal.; Trân Than Vân, J. (ed.); Dumarchez, J. (ed.); Raynoud, S. (ed.); Salomon, C. (ed.); Thorsett, S. (ed.); Vinet, JY (ed.), Second generation suspensions for LIGO, Proceedings of the XXXIVth Rencontres De Moriond, Les Arcs, France, January 23-30, 1999, Hanoi
[128] Douglass, DH; Braginsky, VB; Hawking, SW (ed.); Israel, W. (ed.), Gravitational-radiation experiments, 90-137 (1979), Cambridge; New York
[129] Drever, RWP; Deroulle, N. (ed.); Piran, T. (ed.), Interferometric detectors of gravitational radiation, 321-338 (1983), Amsterdam; New York
[130] Drever, RWP; Hough, J.; Edelstein, WA; Pugh, JR; Martin, W.; Bertotti, B. (ed.), On Gravitational Radiation Detectors Using Optical Sensing Techniques, Proceedings of the International Meeting, Pavia, 17-20 September 1976, New York
[131] Drever, RWP; etal.; Meystre, P. (ed.); Scully, MO (ed.), Gravitational wave detectors using laser interferometers and optical cavities: Ideas, principles and prospects, Proceedings of the NATO Advanced Study Institute, Bad Windsheim, Germany, August 16-29, 1981, New York
[132] Dupuis, R.J. and Woan, G., “Bayesian estimation of pulsar parameters from gravitational wave data”, Phys. Rev. D, 72, 102002, (2005). [DOI], [gr-qc/0508096]. (Cited on page 41.)
[133] Edelstein, W.A., Hough, J., Pugh, J.R. and Martin, W., “Limits to the measurement of displacement in an interferometric gravitational radiation detector”, J. Phys. E: Sci. Instrum., 11(7), 710-711, (1978). [DOI]. (Cited on pages 18, 19, and 20.)
[134] “‘Einstein Telescope”, project homepage, European Gravitational Observatory (EGO), (2008). URL (accessed 5 January 2009): http://www.et-gw.eu/. (Cited on pages 15 and 46.)
[135] “‘Einstein(AT)Home”, project homepage, UW-Milwaukee. URL (accessed 3 October 2008): http://einstein.phys.uwm.edu. (Cited on page 42.)
[136] Estabrook, F.B. and Wahlquist, H.D., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439-447, (1975). [DOI], [ADS]. (Cited on page 5.)
[137] “‘ET sensitivities page”, project homepage, EGO. URL (accessed 23 December 2010): http://www.et-gw.eu/etsensitivities. (Cited on page 47.)
[138] Fairhurst, S., “Source localization with an advanced gravitational wave detector network”, Class. Quantum Grav., 28, 105021, (2011). [DOI], [arXiv:1010.6192 [gr-qc]]. (Cited on page 46.) · Zbl 1217.83022
[139] Fairhurst, S., Guidi, G.M., Hello, P., Whelan, J.T. and Woan, G., “Current status of gravitational wave observations”, Gen. Relativ. Gravit., 43, 387-407, (2010). [DOI], [arXiv:0908.4006 [gr-qc]]. (Cited on page 36.)
[140] Faller, JE; Bender, PL; Hall, JL; Hils, D.; Vincent, MA; Longdon, N. (ed.); Melita, O. (ed.), Space antenna for gravitational wave astronomy, Proceedings of the Colloquium, Cargèse, Corsica, France, 23-25 October 1984, Noordwijk
[141] Flaminio, R. et al. (Virgo Collaboration), Advanced Virgo White Paper, VIR-NOT-DIR-1390-304, (Virgo, Cascina, 2005). URL (accessed 16 February 2011): https://tds.ego-gw.it/ql/?c=1544. (Cited on pages 34 and 45.)
[142] Forward, R.L., Zipoy, D., Weber, J., Smith, S. and Benioff, H., “Upper Limit for Interstellar Millicycle Gravitational Radiation”, Nature, 189, 473, (1961). [DOI]. (Cited on page 10.)
[143] Frede, M., Schulz, B., Wilhelm, R., Kwee, P., Seifert, F., Willke, B. and Kracht, D., “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors”, Opt. Express, 15, 459-465, (2007). [DOI]. (Cited on page 25.)
[144] Frede, M., Wilhelm, R., Kracht, D. and Fallnich, C., “Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power”, Opt. Express, 13, 7516-7519, (2005). [DOI]. (Cited on page 25.)
[145] Freise, A., Chelkowski, S., Hild, S., Del Pozzo, W., Perreca, A. and Vecchio, A., “Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector”, Class. Quantum Grav., 26, 085012, (2009). [DOI], [arXiv:0804.1036]. (Cited on page 46.) · Zbl 1163.83332
[146] Freise, A. and Strain, K., “Interferometer Techniques for Gravitational-Wave Detection”, Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 10 December 2010): http://www.livingreviews.org/lrr-2010-1. (Cited on page 45.) · Zbl 1215.83006
[147] Fritschel, P, “DC Readout for Advanced LIGO”, LSC meeting, Hannover, 21 August 2003, conference paper, (2003). Online version (accessed 16 February 2011): http://www.ligo.caltech.edu/docs/G/G030460-00/G030460-00.pdf. (Cited on page 26.)
[148] Fritschel, P., González, G., Lantz, B., Saha, P. and Zucker, M., “High Power Interferometric Phase Measurement Limited by Quantum Noise and Application to Detection of Gravitational Waves”, Phys. Rev. Lett., 80, 3181-3184, (1998). [DOI]. (Cited on page 27.)
[149] “‘GCN: The Gamma-ray Coordinates Network (Transient Astronomy Network)”, project homepage, GSFC/NASA. URL (accessed 3 October 2008): http://gcn.gsfc.nasa.gov/. (Cited on page 39.)
[150] “‘GEO600 Sensitivity Curves”, project homepage, University of Hannover. URL (accessed 22 January 2008): http://www.geo600.uni-hannover.de/geocurves/. (Cited on page 33.)
[151] “‘GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 16 February 2011): http://www.geo600.org/. (Cited on pages 5 and 28.)
[152] Giampieri, G., Hellings, R.W., Tinto, M. and Faller, J.E., “Algorithms for unequal-arm Michelson interferometers”, Opt. Commun., 123, 669-678, (1996). [DOI]. (Cited on page 50.)
[153] Gillespie, A.D. and Raab, F.J., “Thermally Excited Vibrations of the Mirrors of Laser Interferometer Gravitational-Wave Detectors”, Phys. Rev. D, 52, 577-585, (1995). [DOI]. (Cited on page 16.)
[154] Glauber, R.J., “Coherent and Incoherent States of the Radiation Field”, Phys. Rev., 131, 2766, (1963). [DOI]. (Cited on page 18.) · Zbl 1371.81166
[155] Golenetskii, S., Aptekar, R., Mazets, E., Pal’Shin, V., Frederiks, D. and Cline, T., GRB 070201: clarification on localization and konus-wind spectra, GCN Circular, (GSFC/NASA, Greenbelt, MD, 2007). URL (accessed 16 February 2011): http://gcn.gsfc.nasa.gov/gcn3/6094.gcn3. (Cited on page 39.)
[156] Golenetskii, S. et al., IPN localization of very intense short GRB 070201, GCN Circular, (GSFC/NASA, Greenbelt, MD, 2007). URL (accessed 16 February 2011): http://gcn.gsfc.nasa.gov/gcn/gcn3/6088.gcn3. (Cited on page 39.)
[157] Golla, D., Freitag, I., Zellmer, H., Schone, W., Kropke, I. and Welling, H., “15 W single-frequency operation of a CW diode laser-pumped Nd:YAG ring laser”, Opt. Commun., 98, 86-90, (1993). [DOI]. (Cited on page 25.)
[158] Gottardi, L. et al., “Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K”, Phys. Rev. D, 76, 102005, (2007). [DOI], [arXiv:0705.0122 [gr-qc]]. (Cited on pages 5 and 10.)
[159] “‘Graviton Group”, project homepage, DAS/INPE. URL (accessed 14 January 2008): http://www.das.inpe.br/graviton/. (Cited on pages 5 and 10.)
[160] Green, M.A. and Keevers, M.J., “Optical properties of intrinsic silicon at 300 K”, Prog. Photovolt: Res. Appl., 3, 189-192, (1995). [DOI]. (Cited on page 25.)
[161] Gréverie, C.; Brillet, A.; Man, CN; Chaibi, W.; Coulon, JP; Feliksik, K., High power fiber amplifier for Advanced Virgo (2010), Washington, DC
[162] Grote, H. (LIGO Scientific Collaboration), “The GEO 600 status”, Class. Quantum Grav., 27, 084003, (2010). [DOI]. (Cited on page 34.)
[163] Grote, H. et al., “The status of GEO 600”, Class. Quantum Grav., 22, S193-S198, (2005). [DOI]. (Cited on page 33.)
[164] “‘GW group in ICRR UT”, project homepage, University of Tokyo. URL (accessed 16 February 2011): http://www.icrr.u-tokyo.ac.jp/gr/home/gre.html. (Cited on pages 30 and 46.)
[165] “‘GWIC Sponsored Conferences”, project homepage, Gravitational Wave International Committee. URL (accessed 8 December 2010): http://gwic.ligo.org/conferences/. (Cited on page 28.)
[166] Harry, G.M. (LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006, (2010). [DOI]. (Cited on pages 13, 19, 22, 44, and 45.)
[167] Harry, G.M., Fritschel, P., Shaddock, D.A., Folkner, W. and Phinney, E.S., “Laser interferometry for the Big Bang Observer”, Class. Quantum Grav., 23, 4887-4894, (2006). [DOI]. (Cited on page 52.) · Zbl 1099.83512
[168] Harry, G.M. et al., “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav., 65, 897-917, (2002). [DOI], [gr-qc/0109073]. (Cited on pages 16 and 17.) · Zbl 0997.83508
[169] Heinzel, G., Strain, K.A., Mizuno, J., Skeldon, K.D., Willke, B., Winkler, W., Schilling, R. and Danzmann, K., “An experimental demonstration of dual recycling on a suspended interferometer”, Phys. Rev. Lett., 81, 5493-5496, (1998). [DOI]. (Cited on page 21.)
[170] Heng, I.S., Blair, D.G., Ivanov, E.N. and Tobar, M.E., “Long term operation of a niobium resonant bar gravitational wave antenna”, Phys. Lett. A, 218, 190-196, (1996). [DOI]. (Cited on page 5.)
[171] Hereld, M., A search for gravitational radiation from PSR 1937+214, Ph.D. Thesis, (California Institute of Technology, Pasadena, CA, 1984). (Cited on page 35.)
[172] Hewitson, M. et al., “A report on the status of the GEO 600 gravitational wave detector”, Class. Quantum Grav., 20, S581-S591, (2003). [DOI]. (Cited on page 32.)
[173] Hild, S. (LIGO Scientific Collaboration), “The status of GEO 600”, Class. Quantum Grav., 23, S643-S651, (2006). [DOI]. (Cited on page 34.) · Zbl 1117.85307
[174] Hild, S., Chelkowski, S. and Freise, A., “Pushing towards the ET sensitivity using ‘conventional’ technology”, arXiv, e-print, (2008). [arXiv:0810.0604 [gr-qc]]. (Cited on pages 46 and 47.)
[175] Hild, S., Chelkowski, S., Freise, A., Franc, J., Morgado, N., Flaminio, R. and DeSalvo, R., “A xylophone configuration for a third-generation gravitational wave detector”, Class. Quantum Grav., 27, 015003, (2010). [DOI], [arXiv:0906.2655 [gr-qc]]. (Cited on page 47.) · Zbl 1184.83017
[176] Hild, S., Grote, H., Smith, J.R. and Hewitson, M. (GEO600-team), “Towards gravitational wave astronomy: Commissioning and characterization of GEO600”, J. Phys.: Conf. Ser., 32, 66-73, (2006). [DOI]. (Cited on page 34.)
[177] Hild, S. et al., “DC-readout of a signal-recycled gravitational wave detector”, Class. Quantum Grav., 26, 055012, (2009). [DOI], [arXiv:0811.3242 [gr-qc]]. (Cited on pages 26 and 34.)
[178] Hild, S. et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observatories”, arXiv, e-print, (2010). [arXiv:1012.0908 [gr-qc]]. (Cited on pages 25, 46, and 47.)
[179] Hobbs, G.B. et al., “Gravitational-Wave Detection Using Pulsars: Status of the Parkes Pulsar Timing Array Project”, Publ. Astron. Soc. Australia, 26, 103-109, (2008). [DOI], [arXiv:0812.2721 [astro-ph]]. (Cited on page 6.)
[180] Holtz, D.E. and Hughes, S.A., “Using gravitational-wave standard sirens”, Astrophys. J., 629, 15-22, (2005). [DOI], [astro-ph/0504616]. (Cited on page 8.)
[181] Hough, J.; Blair, DG (ed.); Buckingham, MJ (ed.), Prospects for Gravitational Wave Detection with Laser Interferometer Detectors, Proceedings of the meeting, The University of Western Australia, 8-13 August 1988, Singapore; River Edge, NJ
[182] Hough, J.; etal.; Blair, DG (ed.), The stabilisation of lasers for interferometric gravitational wave detectors, 329-351 (1991), Cambridge; New York
[183] Hough, J.; LISA Science Team; etal.; Wilson, A. (ed.), LISA—The Interferometer, Proceedings of the Alpbach Summer School 1997, Alpbach, Tyrol, Austria, 22-31 July 1997, Noordwijk
[184] Hughes, S.A. and Thorne, K.S., “Seismic gravity-gradient noise in interferometric gravitational-wave detectors”, Phys. Rev. D, 58, 122002, (1998). [DOI]. (Cited on pages 13 and 15.)
[185] Hulse, R.A., “The discovery of the binary pulsar”, Rev. Mod. Phys., 66, 699-710, (1994). [DOI]. (Cited on page 8.)
[186] Hurley, K. et al., “An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts”, Nature, 434, 1098-1103, (2005). [DOI], [astro-ph/0502329]. (Cited on page 39.)
[187] Janssen, GH; Stappers, BW; Kramer, M.; Purver, M.; Jessner, A.; Cognard, I.; Bassa, C. (ed.); Wang, Z. (ed.); Cumming, A. (ed.); Kaspi, VM (ed.), European Pulsar Timing Array, No. 983, 633-635 (2008), Melville, NY
[188] Jaranowski, P., Królak, A. and Schutz, B.F., “Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection”, Phys. Rev. D, 58, 063001, (1998). [DOI], [gr-qc/9804014]. (Cited on page 41.)
[189] Jarosik, N. et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results”, Astrophys. J. Suppl. Ser., 192, 14, (2011). [DOI], [arXiv:1001.4744 [astro-ph.CO]]. (Cited on page 43.)
[190] Jenet, F.A. et al., “Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects”, Astrophys. J., 653, 1571-1576, (2006). [DOI]. (Cited on page 6.)
[191] Jenet, F. et al., “The North American Nanohertz Observatory for Gravitational Waves”, arXiv, e-print, (2009). [arXiv:0909.1058 [astro-ph.IM]]. (Cited on page 6.)
[192] Jennrich, O., “LISA technology and instrumentation”, Class. Quantum Grav., 26, 153001, (2009). [DOI], [arXiv:0906.2901]. (Cited on pages 48 and 51.) · Zbl 1172.83003
[193] Johann, U.A., Ayre, M., Gath, P.F., Holota, W., Marenaci, P., Schulte, H.R., Weimer, P. and Weise, D., “The European Space Agency’s LISA mission study: status and present results”, J. Phys.: Conf. Ser., 122, 012005, (2008). [DOI]. (Cited on page 51.)
[194] Ju, L. and Blair, D.G., “Low Resonant-Frequency Cantilever Spring Vibration Isolator for Gravitational-Wave Detectors”, Rev. Sci. Instrum., 65, 3482-3488, (1994). [DOI]. (Cited on page 13.)
[195] Ju, L., Notcutt, M., Blair, D.G., Bondu, F. and Zhao, C.N., “Sapphire beamsplitters and test masses for advanced laser interferometric gravitational wave detectors”, Phys. Lett. A, 218, 197-206, (1996). [DOI]. (Cited on page 17.)
[196] Kalogera, V. et al., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179-L182, (2004). [DOI]. (Cited on page 29.)
[197] Kalogera, V. et al., “Erratum: ‘The Cosmic Coalescence Rates for Double Neutron Star Binaries’”, Astrophys. J. Lett., 614, L137-L138, (2004). [DOI], [astro-ph/0312101]. (Cited on page 29.)
[198] Kanner, J., Huard, T.L., Márka, S., Murphy, D.C., Piscionere, J., Reed, M. and Shawhan, P., “LOOC UP: locating and observing optical counterparts to gravitational wave bursts”, Class. Quantum Grav., 25, 184034, (2008). [DOI], [arXiv:0803.0312]. (Cited on page 40.)
[199] Kawamura, S. et al. (DECIGO Collaboration), “The Japanese space gravitational wave antenna: DEECIGO”, Class. Quantum Grav., 28, 094011, (2011). [DOI]. (Cited on page 51.)
[200] Kerr, G.A. and Hough, J., “Coherent addition of laser oscillators for use in gravitational wave antenna”, Appl. Phys. B, 49, 491-495, (1989). [DOI]. (Cited on page 24.)
[201] Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S. and Vyatchanin, S.P., “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics”, Phys. Rev. D, 65, 022002, (2002). [DOI]. (Cited on page 20.)
[202] Klimenko, S. and Mitselmakher, G., “A wavelet method for detection of gravitational wave bursts”, Class. Quantum Grav., 21, S1819-S1830, (2004). [DOI]. (Cited on page 36.) · Zbl 1070.83514
[203] Knispel, B. and Allen, B., “Blandford’s argument: The strongest continuous gravitational wave signal”, Phys. Rev. D, 78, 044031, (2008). [DOI], [arXiv:0804.3075]. (Cited on page 41.)
[204] Kogelnik, H. and Li, T., “Laser beams and resonators”, Proc. IEEE, 54, 1312-1329, (1966). [DOI]. (Cited on page 24.)
[205] Kopparapu, R.K., Hanna, C., Kalogera, V., O’Shaughnessy, R., González, G., Brady, P.R. and Fairhurst, S., “Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events”, Astrophys. J., 675, 1459-1467, (2008). [DOI], [arXiv:0706.1283]. (Cited on page 44.)
[206] Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S. and Palomba, C., “Hough transform search for continuous gravitational waves”, Phys. Rev. D, 70, 082001, (2004). [DOI], [gr-qc/0407001]. (Cited on page 41.)
[207] Kuroda, K. (LCGT Collaboration), “Status of LCGT”, Class. Quantum Grav., 27, 084004, (2010). [DOI]. (Cited on page 45.)
[208] Larson, S., “Sensitivity Curves for Spaceborne Gravitational Wave Observatories”, project homepage, California Institute of Technology. URL (accessed 23 December 2010): http://www.srl.caltech.edu/∼shane/sensitivity/. (Cited on page 49.)
[209] Lawrence, R., Zucker, M., Fritschel, P., Marfuta, P. and Shoemaker, D., “Adaptive thermal compensation of test masses in Advanced LIGO”, Class. Quantum Grav., 19, 1803-1812, (2002). [DOI]. (Cited on page 25.)
[210] Lazzarini, A. and Weiss, R., LIGO Science Requirements Document (SRD), LIGO-E950018-02, (California Institute of Technology, Pasadena, CA, 1996). URL (accessed 16 January 2008): http://www.ligo.caltech.edu/docs/E/E950018-02.pdf. (Cited on page 27.)
[211] Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D, 57, 659-663, (1998). [DOI], [gr-qc/9707013]. (Cited on page 16.)
[212] “‘LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 15 January 2000): http://www.ligo.caltech.edu. (Cited on pages 5 and 27.)
[213] “‘LIGO Laboratory Home Page for Interferometer Sensitivities”, project homepage, LIGO/California Institute of Technology. URL (accessed 22 January 2008): http://www.ligo.caltech.edu/∼jzweizig/distribution/LSC_Data/. (Cited on pages 12 and 31.)
[214] LIGO Scientific Collaboration, Advanced LIGO Reference Design, LIGO-M060056-08, (LIGO, Pasadena, CA, 2007). URL (accessed 14 November 2008): http://www.ligo.caltech.edu/docs/M/M060056-08/M060056-08.pdf. (Cited on page 44.)
[215] “‘LIGO Scientific Collaboration Home Page”, project homepage, California Institute of Technology. URL (accessed 21 January 2008): http://www.ligo.org. (Cited on pages 7, 28, and 36.)
[216] “‘LISA Home Page (ESA)”, project homepage, European Space Agency. URL (accessed 16 February 2011): http://sci.esa.int/lisa. (Cited on pages 5 and 48.)
[217] “‘LISA Home Page (NASA)”, project homepage, JPL/NASA. URL (accessed 15 January 2000): http://lisa.jpl.nasa.gov. (Cited on pages 5 and 48.)
[218] “‘LISA: Laser Interferometer Space Antenna Project—Documentation”, project homepage, GSFC/NASA. URL (accessed 3 September 2009): http://lisa.gsfc.nasa.gov/documentation.html. (Cited on page 51.)
[219] Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8, (2008). URL (accessed 4 January 2011): http://www.livingreviews.org/lrr-2008-8. (Cited on page 6.) · Zbl 1166.85301
[220] Losurdo, G.; etal.; Coccia, E. (ed.); Veneziano, G. (ed.); Pizzella, G. (ed.), Active Control Hierarchy in VIRGO Superattenuator: The Role of the Inverted Pendulum, Proceedings of the conference, CERN, Switzerland, 1-4 July, 1997, Singapore; River Edge, NJ
[221] Loudon, R., “Quantum limit on the Michelson interferometer used for gravitational-wave detection”, Phys. Rev. Lett., 47, 815-818, (1981). [DOI]. (Cited on page 19.)
[222] Lück, H., Freise, A., Goßler, S, Hild, S., Kawabe, K. and Danzmann, K., “Thermal correction of the radii of curvature of mirrors for GEO 600”, Class. Quantum Grav., 21, S985-S989, (2004). [DOI]. (Cited on page 25.)
[223] Ludlow, A.D., Boyd, M.M., Zelevinsky, T., Foreman, S.M., Blatt, S., Notcutt, M., Ido, T. and Ye, J., “Systematic Study of the 87Sr Clock Transition in an Optical Lattice”, Phys. Rev. Lett., 96, 033003, (2006). [DOI]. (Cited on page 23.)
[224] Martin, I.W. et al., “Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2”, Class. Quantum Grav., 25, 055005, (2008). [DOI], [0802.2686]. (Cited on page 17.)
[225] Marx, J. et al., Expanding the LIGO Network: The Case for Installing an Advanced LIGO Detector in Australia, LIGO-M1000115-v6, (LIGO, Pasadena, CA, 2010). URL (accessed 24 November 2010): https://dcc.ligo.org/public/0011/M1000115/006/M1000115-v6-LIGO-AUS_WhitePaper.pdf. (Cited on page 45.)
[226] Mauceli, E., Geng, Z.K., Hamilton, W.O., Johnson, W.W., Merkowitz, S.M., Morse, A., Price, B. and Solomonson, N., “The Allegro gravitational wave detector: Data acquisition and analysis”, Phys. Rev. D, 54, 1264-1275, (1996). [DOI]. (Cited on page 6.)
[227] Mavalvala, N., McClelland, D.E., Mueller, G., Reitze, D.H., Schnabel, R. and Willke, B., “Looking towards third generation gravitational wave detectors”, Gen. Relativ. Gravit., 25, 1-24, (2010). [DOI]. (Cited on pages 24 and 25.)
[228] McNabb, J.W.C. et al., “Overview of the BlockNormal event trigger generator”, Class. Quantum Grav., 21, S1705-S1710, (2004). [DOI]. (Cited on page 36.) · Zbl 1170.83364
[229] McNamara, P.W., Ward, H., Hough, J. and Robertson, D.I., “Laser frequency stabilization for spaceborne gravitational wave detectors”, Class. Quantum Grav., 14, 1543-1547, (1997). [DOI]. (Cited on page 50.)
[230] Meers, B.J., Some aspects of the development of an optically sensed gravitational-wave detector, Ph.D. Thesis, (University of Glasgow, Glasgow, 1983). (Cited on page 24.)
[231] Meers, B.J., “Recycling in laser-interferometric gravitational-wave detectors”, Phys. Rev. D, 38, 2317-2326, (1988). [DOI]. (Cited on page 21.)
[232] Meshkov, S., ed., Gravitational Waves, Sources and Detectors, Third Edoardo Amaldi Conference, Pasadena, California, 12-16 July, 1999, AIP Conference Proceedings, 523, (American Institute of Physics, Melville, NY, 2000). (Cited on page 8.)
[233] “‘MiniGRAIL, the first spherical gravitational wave detector”, project homepage, Leiden University. URL (accessed 14 January 2008): http://www.minigrail.nl/. (Cited on pages 5 and 10.)
[234] Miyoki, S. (LCGT Collaboration), “Large scale cryogenic gravitational wave telescope”, Nucl. Phys. B (Proc. Suppl.), 138, 439-442, (2005). [DOI]. (Cited on pages 15, 17, and 45.)
[235] Mizuno, E.; Kawashima, N.; Miyoke, S.; Heflin, EG; Wada, K.; Naito, W.; Nagano, S.; Arakawa, K.; Ciufolini, I. (ed.); Fidecaro, F. (ed.), Effort of Stable Operation by Noise Rreduction of 100m DL Laser Iinterferometer [TENKO-100] for Gravitational Wave Detection, Proceedings of the International Conference, Cascina (Pisa), 19-23 March 1996, Singapore; River Edge, NJ
[236] Moss, G.E., Miller, L.R. and Forward, R.L., “Photon-noise-limited laser transducer for gravitational antenna”, Appl. Opt., 10, 2495, (1971). [DOI]. (Cited on page 5.)
[237] Nabors, C.D., Farinas, A.D., Day, T., Yang, S.T., Gustafson, E.K. and Byer, R.L., “Injection locking of a 13-W CW Nd:YAG ring laser”, Opt. Lett., 14, 1189-1191, (1989). [DOI]. (Cited on page 25.)
[238] Nakagawa, N, Gretarsson, A.M., Gustafson, E.K. and Fejer, M.M.F., “Thermal noise in halfinfinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror”, Phys. Rev. D, 65, 102001, (2002). [DOI], [gr-qc/0105046]. (Cited on pages 16 and 25.)
[239] “‘NAUTILUS Gravitational Wave Antenna”, project homepage, INFN. URL (accessed 14 January 2008): http://www.roma1.infn.it/rog/. (Cited on pages 5, 6, and 10.)
[240] “‘Next steps for LISA”, project homepage, European Space Agency. URL (accessed 10 June 2011): http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48728. (Cited on pages 5, 48, and 51.)
[241] Ng, C.-Y. and Romani, R.W., “Fitting Pulsar Wind Tori. II. Error Analysis and Applications”, Astrophys. J., 673, 411-417, (2008). [DOI], [arXiv:0710.4168]. (Cited on page 43.)
[242] Ni, W.-T., “Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system”, Class. Quantum Grav., 26, 075021, (2009). [DOI], [arXiv:0812.0887]. (Cited on page 52.) · Zbl 1161.83339
[243] Nicholson, D. et al., “Results of the first coincident observations by two laser-interferometric gravitational wave detectors”, Phys. Lett. A, 218, 175-180, (1996). [DOI], [gr-qc/9605048]. (Cited on page 35.)
[244] Niebauer, T.M., Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W. and Danzmann, K., “Pulsar search using data compression with the Garching gravitational wave detector”, Phys. Rev. D, 47, 3106-3123, (1993). [DOI]. (Cited on page 35.)
[245] Notcutt, M., Ma, L.-S., Ludlow, A.D., Foreman, S.M., Ye, J. and Hall, J.L., “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers”, Phys. Rev. A, 73, 031804, (2006). (Cited on page 23.)
[246] Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids, Materials Science Series, 1, (Academic Press, New York, 1972). (Cited on page 16.)
[247] Ohashi, M. (LCGT Collaboration), “Status of LCGT and CLIO”, J. Phys.: Conf. Ser., 120, 032008, (2008). [DOI]. (Cited on pages 17 and 45.)
[248] O’Shaughnessy, R., Kim, C., Fragos, T., Kalogera, V. and Belczynski, K., “Constraining Population Synthesis Models via the Binary Neutron Star Population”, Astrophys. J., 633, 1076-1084, (2005). [DOI], [ADS], [astro-ph/0504479]. (Cited on page 29.)
[249] O’Shaughnessy, R., Kim, C., Kalogera, V. and Belczynski, K., “Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates”, Astrophys. J., 672, 479-488, (2008). [DOI]. (Cited on page 29.)
[250] Owen, B.J., “Search templates for gravitational waves from inspiraling binaries: Choice of template spacing”, Phys. Rev. D, 53, 6749-6761, (1996). [DOI], [gr-qc/9511032]. (Cited on page 37.)
[251] Owen, B.J., “How to adapt broad-band gravitational-wave searches for r-modes”, Phys. Rev. D, 82, 104002, (2010). [DOI], [arXiv:1006.1994 [gr-qc]]. (Cited on page 43.)
[252] Owen, B.J. and Sathyaprakash, B.S., “Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement”, Phys. Rev. D, 60, 022002, (1999). [DOI], [gr-qc/9808076]. (Cited on page 37.)
[253] Pallottino, GV; Coccia, E. (ed.); Veneziano, G. (ed.); Pizzella, G. (ed.), The Resonant Mass Detectors of the Rome Group, Proceedings of the conference, CERN, Switzerland, 1-4 July, 1997, Singapore; River Edge, NJ
[254] Papa, M.A., “Progress towards gravitational-wave astronomy”, Class. Quantum Grav., 25, 114009, (2008). [DOI], [arXiv:0802.0936]. (Cited on page 36.) · Zbl 1144.83307
[255] Phinney, E.S., “Finding and Using Electromagnetic Counterparts of Gravitational Wave Sources”, arXiv, e-print, (2009). [arXiv:0903.0098 [astro-ph.CO]]. (Cited on page 40.)
[256] Plissi, M.V., Torrie, C.I., Husman, M.E., Robertson, N.A., Strain, K.A., Ward, H., Lück, H. and Hough, J., “GEO 600 triple pendulum suspension system: Seismic isolation and control”, Rev. Sci. Instrum., 71, 2539-2545, (2000). [DOI]. (Cited on page 13.)
[257] Plissi, M.V. et al., “Aspects of the suspension system for GEO 600”, Rev. Sci. Instrum., 69, 3055-3061, (1998). [DOI]. (Cited on page 13.)
[258] Pradier, T. (Antares Collaboration), “The Antares neutrino telescope and multi-messenger astronomy”, Class. Quantum Grav., 27, 194004, (2010). [DOI], [arXiv:1004.5579 [astro-ph.HE]]. (Cited on page 40.)
[259] Predoi, V. et al., “Prospects for joint radio telescope and gravitational-wave searches for astrophysical transients”, Class. Quantum Grav., 27, 084018, (2010). [DOI], [arXiv:0912.0476[gr-qc]]. (Cited on page 40.)
[260] Prix, R.; LIGO Scientific Collaboration; etal.; Becker, W. (ed.); Huang, HH (ed.), Gravitational Waves from Spinning Neutron Stars, 363rd WE-Heraeus Seminar, Bad Honnef, Germany, May 14-16, 2006, Berlin
[261] Prodi, GA; etal.; Coccia, E. (ed.); Veneziano, G. (ed.); Pizzella, G. (ed.), Initial Operation of the Gravitational Wave Detector AURIGA, Proceedings of the conference, CERN, Switzerland, 1-4 July, 1997, Singapore; River Edge, NJ
[262] Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave observatory”, Class. Quantum Grav., 27, 194002, (2010). [DOI]. (Cited on page 25.)
[263] Rafac, R.J., Young, B.C., Beall, J.A., Itano, W.M., Wineland, D.J. and Bergquist, J.C., “Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+”, Phys. Rev. Lett., 85, 2462, (2000). [DOI]. (Cited on page 23.)
[264] Robertson, D.I. et al., “The Glasgow 10 m prototype laser interferometric gravitational wave detector”, Rev. Sci. Instrum., 66 (9), 4447-4452, (1995). [DOI]. (Cited on pages 24 and 27.)
[265] Robertson, N.A., Hoggan, S., Mangan, J.B. and Hough, J., “Intensity stabilisation of an argon laser using an electro-optic modulator”, Appl. Phys. B, 39, 149-153, (1986). [DOI]. (Cited on page 23.)
[266] Rowan, S.; Twyford, SM; Hough, J.; Coccia, E. (ed.); Veneziano, G. (ed.); Pizzella, G. (ed.), The design of low loss suspensions for advanced gravitational wave detectors, Proceedings of the conference, CERN, Switzerland, 1-4 July, 1997, Singapore; River Edge, NJ
[267] Rowan, S., Twyford, S.M., Hough, J., Gwo, D.-H. and Route, R., “Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica”, Phys. Lett. A, 246, 471-478, (1998). [DOI]. (Cited on page 17.)
[268] Rowan, S., Twyford, S.M., Hutchins, R., Kovalik, J., Logan, J.E., McLaren, A.C., Robertson, N.A. and Hough, J., “Q factor measurements on prototype fused quartz pendulum suspensions for use in gravitational wave detectors”, Phys. Lett. A, 233, 303-308, (1997). [DOI]. (Cited on page 17.)
[269] Rowan, S.; etal.; Cruise, M. (ed.); Saulson, P. (ed.), Test Mass Materials for a New Generation of Gravitational Wave Detectors, No. 4856, 292-297 (2003), Bellingham, WA
[270] Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W., Billing, H. and Maischberger, K., “A mode selector to suppress fluctuations in laser beam geometry”, Opt. Acta, 26 (5), 641-658, (1981). (Cited on pages 23 and 24.)
[271] Sakata, S., Kawamura, S., Sato, S., Somiya, K., Arai, K., Fukushima, M. and Sugamoto, A., “Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer”, J. Phys.: Conf. Ser., 32, 464-469, (2006). [DOI]. (Cited on page 19.)
[272] Sandford, M.C.W., ed., First International LISA Symposium, Proceedings of the symposium, held at the Rutherford Appleton Laboratory in Chilton, 9-12 July 1996, Class. Quantum Grav., 14, (Institute of Physics Publishing, Bristol, 1997). (Cited on pages 8, 9, and 48.) · Zbl 0866.53057
[273] Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [arXiv:0903.0338]. URL (accessed 03 March 2009): http://www.livingreviews.org/lrr-2009-2. (Cited on pages 8, 9, 29, and 36.) · Zbl 1166.85002
[274] Sato, S. et al. (DECIGO Collaboration), “DECIGO: The Japanese space gravitational wave antenna”, J. Phys.: Conf. Ser., 154, 012040, (2009). [DOI]. (Cited on page 51.)
[275] Saulson, P.R., “Terrestrial gravitational noise on a gravitational wave antenna”, Phys. Rev. D, 30, 732-736, (1984). [DOI]. (Cited on pages 13 and 15.)
[276] Saulson, P.R., “Thermal noise in mechanical experiments”, Phys. Rev. D, 42, 2437-2445, (1990). [DOI]. (Cited on page 16.)
[277] Saulson, P.R., Fundamentals of Interferometric Gravitational Wave Detectors, (World Scientific, Singapore; River Edge, NJ, 1994). (Cited on page 7.) · Zbl 1380.83001
[278] Schilling, R., personal communication, (1981). (Cited on page 21.)
[279] Schmidt-Kaler, F. et al., “The coherence of qubits based on single Ca+ ions”, J. Phys. B: At. Mol. Opt. Phys., 36, 623, (2003). [DOI]. (Cited on page 23.)
[280] Schnabel, R. et al., “Building blocks for future detectors: Silicon test masses and 1550 nm laser light”, J. Phys.: Conf. Ser., 228, 012029, (2010). [0912.3164]. (Cited on page 25.)
[281] Schnupp, L., “Internal modulation schemes”, Presentation at European Collaboration Meeting on Interferometric Detection of Gravitational Waves, (Sorrent, Italy), conference paper, (1988). (Cited on page 26.)
[282] Schutz, B.F., “Determining the nature of the Hubble constant”, Nature, 323, 310-311, (1986). [DOI]. (Cited on page 8.)
[283] Schutz, B.F., Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity, (Cambridge University Press, Cambridge, 2003). (Cited on page 7.)
[284] Searle, A.C., Sutton, P.J. and Tinto, M., “Bayesian detection of unmodeled bursts of gravitational waves”, Class. Quantum Grav., 26, 155017, (2009). [DOI], [arXiv:0809.2809]. (Cited on page 36.) · Zbl 1172.85315
[285] Sheard, B.S., Gray, M.B., McClelland, D.E. and Shaddock, D.A., “Laser frequency stabilization by locking to a LISA arm”, Phys. Lett. A, 320, 9-21, (2003). [DOI]. (Cited on page 50.)
[286] Shine Jr, R.J., Alfrey, A.J. and Byer, R.L., “40-W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser”, Opt. Lett., 20 (5), 459-461, (1995). [DOI]. (Cited on page 24.)
[287] Shoemaker, D.H., Schilling, R., Schnupp, L., Winkler, W., Maischberger, K. and Rüdiger, A., “Noise behavior of the Garching 30-meter prototype gravitational-wave detector”, Phys. Rev. D, 38, 423-432, (1988). [DOI]. (Cited on pages 24 and 27.)
[288] Skeldon, K.D., Strain, K.A., Grant, A.I. and Hough, J., “Test of an 18-m-long suspended modecleaner cavity”, Rev. Sci. Instrum., 67 (7), 2443-2448, (1996). [DOI]. (Cited on page 24.)
[289] Smith, J.R. et al., “Commissioning, characterization and operation of the dual-recycled GEO 600”, Class. Quantum Grav., 21, S1737-S1745, (2004). [DOI]. (Cited on page 33.) · Zbl 1107.83303
[290] Smith, S.L., A search for gravitational waves from coalesing binary stars using the Caltech 40 meter gravity wave detector, Ph.D. Thesis, (California Institute of Technology, Pasadena, CA, 1988). (Cited on page 35.)
[291] Spero, RE; Nieto, MM (ed.); Hoffman, CM (ed.); Kolb, EW (ed.); Sandberg, VD (ed.); Toevs, JW (ed.); Haxton, WC (ed.), Prospects for Ground Based Detectors of Low Frequency Gravitational Radiation, Proceedings of the Workshop, Los Alamos, 1982, Melville, NY
[292] Strain, K.A. and Meers, B.J., “Experimental demonstration of dual recycling for interferometric gravitational-wave detectors”, Phys. Rev. Lett., 66, 1391-1394, (1991). [DOI]. (Cited on page 21.)
[293] Sutton, P., S3 Performance of the LIGO Interferometers as Measured by SenseMonitor, LIGO-T030276-00-Z, (LIGO/California Institute of Technology, Pasadena, CA, 2003). URL (accessed 16 January 2008): http://www.ligo.caltech.edu/docs/T/T030276-00.pdf. (Cited on page 30.)
[294] “‘TAMA300 Project”, project homepage, National Astronomical Observatory of Japan. URL (accessed 15 January 2000): http://tamago.mtk.nao.ac.jp. (Cited on pages 5 and 27.)
[295] Taylor, J.H., “Binary Pulsars and Relativistic Gravity”, Rev. Mod. Phys., 66, 711-719, (1994). [DOI]. (Cited on page 8.)
[296] Thorne, K.S., Black Holes and Time Warps: Einstein’s Outrageous Legacy, (W.W. Norton, New York, 1994). (Cited on page 7.) · Zbl 0949.83500
[297] Tinto, M. and Dhurandhar, S.V., “Time Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4, (2005). URL (accessed 03 September 2009): http://www.livingreviews.org/lrr-2005-4. (Cited on page 50.) · Zbl 1206.83006
[298] Torrie, CI; etal.; Trân Than Vân, J. (ed.); Dumarchez, J. (ed.); Raynoud, S. (ed.); Salomon, C. (ed.); Thorsett, S. (ed.); Vinet, JY (ed.), Suspension system design for the main optics for GEO 600, Proceedings of the XXXIVth Rencontres De Moriond, Les Arcs, France, January 23-30, 1999, Hanoi
[299] Tyson, J.A. and Giffard, R.P., “Gravitational-Wave Astronomy”, Annu. Rev. Astron. Astrophys., 16, 521-554, (1978). [DOI]. (Cited on page 5.)
[300] Unruh, WG; Meystre, P. (ed.); Scully, MO (ed.), Quantum Noise in the Interferometer Detector, Proceedings of the NATO Advanced Study Institute on Quantum Optics and Experimental General Relativity, Bad Windsheim, Germany, August 1981, New York
[301] Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K. and Schnabel, R., “Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band”, Phys. Rev. Lett., 97, 011101, (2006). [DOI], [arXiv:0707.0164]. (Cited on page 19.)
[302] Vahlbruch, H. et al., “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction”, Phys. Rev. Lett., 100, 033602, (2008). [DOI], [arXiv:0706.1431]. (Cited on page 34.)
[303] Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 25 January 2011): http://www.livingreviews.org/lrr-2009-5. (Cited on page 25.) · Zbl 1215.83013
[304] “‘Virgo”, project homepage, INFN. URL (accessed 16 February 2011): http://www.virgo.infn.it. (Cited on pages 5 and 27.)
[305] “‘Virgo Sensitivity Curves”, project homepage, Virgo/INFN. URL (accessed 16 February 2011): http://www.virgo.infn.it/DataAnalysis/Calibration/Sensitivity/. (Cited on page 35.)
[306] Vogt, R.E., Drever, R.W.P., Thorne, K.S., Raab, F.J. and Weiss, R., “A Laser Interferometer Gravitational Wave Observatory (Proposal to the National Science Foundation)”, unknown format, (1989). (Cited on page 24.)
[307] Vyatchanin, S.P. and Matsko, A.B., “Quantum limit on force measurements”, J. Exp. Theor. Phys., 77, 218-221, (1993). (Cited on page 19.)
[308] Waldman, S.J. et al. (LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run”, Class. Quantum Grav., 23, S653-S660, (2006). [DOI]. (Cited on page 25.) · Zbl 1117.83307
[309] Ward, R.L. et al., “dc readout experiment at the Caltech 40m prototype interferometer”, Class. Quantum Grav., 25, 114030, (2008). [DOI]. (Cited on page 26.)
[310] Weber, J., “Evidence for Discovery of Gravitational Radiation”, Phys. Rev. Lett., 22, 1320-1324, (1969). [DOI]. (Cited on pages 5 and 10.)
[311] Weber, J., “Anisotropy and Polarization in the Gravitational-Radiation Experiments”, Phys. Rev. Lett., 25, 180-184, (1970). [DOI]. (Cited on pages 5 and 10.)
[312] Webster, S.A., Oxborrow, M. and Gill, P., “Subhertz-linewidth Nd:YAG laser”, Opt. Lett., 29, 1497-1499, (2004). [DOI]. (Cited on page 23.)
[313] Weiss, R., Electromagnetically Coupled Broadband Gravitational Antenna, Quart. Progr. Rep., 105:54-76, (Research Lab. Electron., MIT, Cambridge, MA, 1972). (Cited on pages 5, 15, and 20.)
[314] Weiss, R. and Block, B., “A Gravimeter to Monitor the 0 <Emphasis Type=”Italic“>S0 Dilational Mode of the Earth”, J. Geophys. Res., 70 (22), 6515-5627, (1965). (Cited on page 10.)
[315] Whitcomb, S.E., “Ground-based gravitational-wave detection: now and future”, Class. Quantum Grav., 25, 114013, (2008). [DOI]. (Cited on pages 10, 32, and 44.) · Zbl 1144.83309
[316] Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [Google Books]. (Cited on page 8.) · Zbl 0785.53068
[317] Willke, B., Uehara, N., Gustafson, E.K., Byer, R.L., King, P.J., Steel, S.U. and Savage Jr, R.L., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner”, Opt. Lett., 23 (21), 1704-1706, (1998). [DOI]. (Cited on page 24.)
[318] Willke, B. et al., “Status of GEO 600”, Class. Quantum Grav., 21, S417-S423, (2004). [DOI]. (Cited on page 33.)
[319] Willke, B. et al., “The GEO-HF project”, Class. Quantum Grav., 23, S207-S214, (2006). [DOI]. (Cited on page 34.)
[320] Willke, B. et al., “Stabilized lasers for advanced gravitational wave detectors”, Class. Quantum Grav., 25, 114040, (2008). [DOI]. (Cited on page 25.)
[321] Willke, B. et al. (LIGO Scientific Collaboration), “GEO600: status and plans”, Class. Quantum Grav., 24, S389-S397, (2007). [DOI]. (Cited on pages 5 and 34.) · Zbl 1206.83066
[322] Winterflood, J.; Blair, DG; Coccia, E. (ed.); Veneziano, G. (ed.); Pizzella, G. (ed.), Ultra-Low Frequency Pre-Isolation in Three Dimensons, Proceedings of the conference, CERN, Switzerland, 1-4 July, 1997, Singapore; River Edge, NJ
[323] Yagi, K. and Seto, N., “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries”, Phys. Rev. D, 83, 044011, (2011). [DOI]. (Cited on page 6.)
[324] Yamamoto, K. et al., “Current status of the CLIO project”, J. Phys.: Conf. Ser., 122, 012002, (2008). [DOI], [arXiv:0805.2384]. (Cited on pages 30 and 46.)
[325] Yardley, D.R.B. et al., “The sensitivity of the Parkes Pulsar Timing Array to individual sources of gravitational waves”, Mon. Not. R. Astron. Soc., 407, 669-680, (2010). [DOI]. (Cited on page 6.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.