×

Optimal directed current of a Brownian motor under a non-Gaussian noise generated by a multiplicative process. (English) Zbl 1195.82062

Summary: Unidirectional motion is achieved when a particle, moving under the influence of an underlying noise source, is subjected to a ratchet asymmetric periodic potential. Here, we investigate how deviations from the Gaussian nature of the noise distribution function impacts the average particle’s current. The input noise is considered to be produced by a Langevin process including both multiplicative and additive random noise sources. The resulting input random signal has a power-law amplitude distribution and a finite correlation time. These features are controlled by the average of the multiplicative noise. We show that the average particle’s velocity depends non-monotonically on the degree of non-Gaussianity of the input noise. It exhibits a maximum at an intermediate value of the effective power-law exponent that characterizes the asymptotic decay of the noise probability distribution function.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
Full Text: DOI

References:

[1] DOI: 10.1016/S0370-1573(01)00081-3 · Zbl 1001.82097 · doi:10.1016/S0370-1573(01)00081-3
[2] DOI: 10.1002/andp.200410121 · Zbl 1160.82332 · doi:10.1002/andp.200410121
[3] DOI: 10.1103/RevModPhys.81.387 · doi:10.1103/RevModPhys.81.387
[4] DOI: 10.1103/PhysRevLett.71.1477 · doi:10.1103/PhysRevLett.71.1477
[5] DOI: 10.1142/S0129183102004030 · Zbl 1079.82554 · doi:10.1142/S0129183102004030
[6] DOI: 10.1140/epjb/e2009-00355-4 · doi:10.1140/epjb/e2009-00355-4
[7] DOI: 10.1016/j.physa.2008.08.034 · doi:10.1016/j.physa.2008.08.034
[8] DOI: 10.1016/j.physa.2009.06.031 · doi:10.1016/j.physa.2009.06.031
[9] DOI: 10.1142/S0129183102004054 · doi:10.1142/S0129183102004054
[10] DOI: 10.1103/PhysRevE.71.021101 · doi:10.1103/PhysRevE.71.021101
[11] DOI: 10.1016/j.physleta.2005.12.010 · Zbl 1187.82111 · doi:10.1016/j.physleta.2005.12.010
[12] DOI: 10.1103/PhysRevE.73.051107 · doi:10.1103/PhysRevE.73.051107
[13] DOI: 10.1016/j.physa.2008.03.027 · doi:10.1016/j.physa.2008.03.027
[14] DOI: 10.1016/j.physleta.2007.10.065 · Zbl 1220.81120 · doi:10.1016/j.physleta.2007.10.065
[15] DOI: 10.1140/epjb/e2007-00255-7 · Zbl 1189.81070 · doi:10.1140/epjb/e2007-00255-7
[16] DOI: 10.1016/j.physleta.2009.07.007 · Zbl 1233.82037 · doi:10.1016/j.physleta.2009.07.007
[17] DOI: 10.1016/j.physleta.2009.08.024 · Zbl 1234.82019 · doi:10.1016/j.physleta.2009.08.024
[18] Wio H. S., Braz. J. Phys. 29 pp 136–
[19] DOI: 10.1016/S0378-4371(01)00062-0 · Zbl 0978.60056 · doi:10.1016/S0378-4371(01)00062-0
[20] DOI: 10.1142/S0219477503001440 · doi:10.1142/S0219477503001440
[21] Revelli J. A., Physica D 168 pp 165–
[22] DOI: 10.1016/j.physd.2004.01.017 · Zbl 1062.82048 · doi:10.1016/j.physd.2004.01.017
[23] DOI: 10.1140/epjb/e2004-00299-1 · doi:10.1140/epjb/e2004-00299-1
[24] DOI: 10.1016/j.physa.2004.12.008 · doi:10.1016/j.physa.2004.12.008
[25] DOI: 10.1142/S0129183103004486 · doi:10.1142/S0129183103004486
[26] DOI: 10.1080/00107510500052444 · doi:10.1080/00107510500052444
[27] Sornette D., J. Phys. I 7 pp 431– · Zbl 0665.76096
[28] DOI: 10.1103/PhysRevE.57.4811 · doi:10.1103/PhysRevE.57.4811
[29] DOI: 10.1016/j.physa.2006.02.039 · doi:10.1016/j.physa.2006.02.039
[30] DOI: 10.1016/S0378-4371(01)00295-3 · Zbl 1022.91503 · doi:10.1016/S0378-4371(01)00295-3
[31] DOI: 10.1016/S0378-4371(01)00466-6 · Zbl 0993.91013 · doi:10.1016/S0378-4371(01)00466-6
[32] DOI: 10.1016/j.physa.2004.06.119 · doi:10.1016/j.physa.2004.06.119
[33] DOI: 10.1103/PhysRevE.66.022101 · doi:10.1103/PhysRevE.66.022101
[34] DOI: 10.1016/S0378-4371(02)01173-1 · Zbl 1001.92040 · doi:10.1016/S0378-4371(02)01173-1
[35] DOI: 10.1016/S0378-4371(99)00370-2 · doi:10.1016/S0378-4371(99)00370-2
[36] DOI: 10.1016/j.physa.2007.11.011 · doi:10.1016/j.physa.2007.11.011
[37] DOI: 10.1016/j.physa.2004.09.042 · doi:10.1016/j.physa.2004.09.042
[38] DOI: 10.1016/j.chaos.2008.10.027 · doi:10.1016/j.chaos.2008.10.027
[39] DOI: 10.1103/PhysRevE.58.1591 · doi:10.1103/PhysRevE.58.1591
[40] Gardiner C. W., Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences (1999)
[41] Scherer C., Métodos Computacionais da Física (2005)
[42] DOI: 10.1016/j.physa.2009.01.013 · doi:10.1016/j.physa.2009.01.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.