×

Directional motion, current reversals and mass separation in a symmetrical periodic potential. (English) Zbl 1233.82037

Summary: The transport of a symmetric periodic potential driven by a static bias and correlated noises is investigated for both the over-damped case and the under-damped case. By both theoretical approximation and numerical simulations, we study steady current of an over-damped Brownian particle moving in the potential. It is shown that the symmetric periodic potential driven by a static bias and the correlated noises is simultaneously able to exhibit directional transport, a single current reversal, as well as a double current reversal. For the under-damped case, we examine the dynamic at various inertial strengths by direct simulations of the stochastic differential equations. We specially focus on the influence of inertial term in the particle dynamics for the noise induced, directed current. Different directions of the steady current is found for different masses of the particles, thus an efficient scheme to separate the Brownian particles according to their mass is suggested.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
68U20 Simulation (MSC2010)
39A50 Stochastic difference equations
Full Text: DOI

References:

[1] Magnasco, M. O., Phys. Rev. Lett., 71, 1477 (1993)
[2] Ai, B.-Q.; Wang, L.-Q.; Liu, L.-G., Phys. Rev. E, 72, 031101 (2005)
[3] Li, J.-H.; Huang, Z.-Q., Phys. Rev. E, 57, 3917 (1998)
[4] Cao, L.; Wu, D.-J., Phys. Rev. E, 62, 7478 (2000)
[5] Cao, L.; Wu, D.-J., Phys. Lett. A, 291, 371 (2001) · Zbl 0976.82045
[6] Borromeo, M.; Giusepponi, S.; Marchesoni, F., Phys. Rev. E, 74, 031121 (2006)
[7] Borromeo, M.; Marchesoni, F., Europhys. Lett., 68, 783 (2004)
[8] Borromeo, M.; Marchesoni, F., Phys. Rev. Lett., 99, 150605 (2007)
[9] Marchesoni, F.; Savel’ev, S.; Nori, F., Phys. Rev. E, 73, 021102 (2006)
[10] Bartussek, P.; Reimann, P.; Hänggi, P., Phys. Rev. Lett., 76, 1166 (1996)
[11] de Souza, C. C.; Van de Vondel, J.; Morelle, M.; Moshchalkov, V. V., Nature, 440, 651 (2006)
[12] Hänggi, P.; Marchesoni, F.; Nori, F., Ann. Phys. (Leipzig), 14, 51 (2005) · Zbl 1160.82332
[13] Linder, B.; Schimansky-Geier, L.; Reimann, P.; Hänggi, P.; Nagaoka, M., Phys. Rev. E, 59, 1417 (1999)
[14] Marchesoni, F., Phys. Lett. A, 237, 126 (1998)
[15] Jung, P.; Kissner, J. G.; Hänggi, P., Phys. Rev. Lett., 76, 3436 (1996)
[16] Reimann, P.; Hänggi, P., Chaos, 8, 629 (1998) · Zbl 0973.81524
[17] Maddox, J., Nature (London), 368, 287 (1994)
[18] Henningsen, U.; Schliwa, M., Nature (London), 389, 93 (1997)
[19] Rousselet, J.; Salome, L.; Ajdari, A.; Prost, J., Nature (London), 370, 446 (1994)
[20] Gomez-Marin, A.; Sancho, J. M., Phys. Rev. E, 77, 031108 (2008)
[21] Chauwin, J.-F.; Ajdari, A.; Prost, J., Europhys. Lett., 27, 421 (1994)
[22] Hänggi, P.; Marchesoni, F., Rev. Mod. Phys., 81, 387 (2009)
[23] Li, J.-H.; Luczka, J.; Hänggi, P., Phys. Rev. E, 64, 011113 (2001)
[24] Madureira, A. J.R.; Hänggi, P.; Wio, H. S., Phys. Lett. A, 217, 248 (1996)
[25] Xie, C.-W.; Mei, D.-C.; Cao, L.; Wu, D.-J., Eur. Phys. J. B, 33, 83 (2003)
[26] Jia, Y.; Li, J.-R., Phys. Rev. Lett., 78, 994 (1997)
[27] Mei, D.-C.; Xie, C.-W.; Zhang, L., Eur. Phys. J. B, 41, 107 (2004)
[28] Kettner, C., Phys. Rev. E, 61, 312 (2000)
[29] Alberts, B., Molecular Biology of the Cell (1994), Garland: Garland New York
[30] Savel’ev, S., Phys. Rev. B, 71, 214303 (2005)
[31] Lutz, C.; Kollmann, M.; Bechinger, C., Phys. Rev. Lett., 93, 026001 (2004)
[32] Gommers, R., Phys. Rev. Lett., 94, 143001 (2005)
[33] Matthias, S.; Muller, F., Nature (London), 424, 53 (2003)
[34] Kärger, K.; Ruthven, D. M., Diffusion in Zeolites and Other Microporous Solids (1992), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.