×

Absorbed driven diffusion can provide positive heat and work output. (English) Zbl 1507.82057

Summary: We investigate overdamped Brownian motion in a fluctuating potential on a one-dimensional interval bordered by absorbing boundaries. The potential switches randomly between the \(\vee\)-shaped and the \(\wedge\)-shaped form and is symmetric with respect to the origin. We derive exact expressions describing the absorption process, dynamics and stochastic energetics of the particle. The mean absorption time can exhibit a pronounced minimum as the function of the potential switching rate. Moreover, there exists a parameter region where both the output work and the released heat are positive. We give a plausible explanation for this phenomenon based on typical statistical features of absorbed trajectories. The presented analytical method can be generalized to other models based on dichotomous switching between two potential shapes.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J60 Diffusion processes
Full Text: DOI

References:

[1] Jülicher, F.; Ajdari, A.; Prost, J., Modeling molecular motors, Rev. Mod. Phys., 69, 1269-1282 (1997) · doi:10.1103/revmodphys.69.1269
[2] Reimann, P., Brownian motors: noisy transport far from equilibrium, Phys. Rep., 361, 57-265 (2002) · Zbl 1001.82097 · doi:10.1016/s0370-1573(01)00081-3
[3] Parrondo, J. M R.; de Cisneros, B. J., Energetics of Brownian motors: a review, Appl. Phys. A, 75, 179-191 (2002) · doi:10.1007/s003390201332
[4] Kolomeisky, A. B.; Fisher, M. E., Molecular motors: a theorist’s perspective, Annu. Rev. Phys. Chem., 58, 675-695 (2007) · doi:10.1146/annurev.physchem.58.032806.104532
[5] Hänggi, P.; Marchesoni, F., Artificial Brownian motors: controlling transport on the nanoscale, Rev. Mod. Phys., 81, 387-442 (2009) · doi:10.1103/revmodphys.81.387
[6] Kolomeisky, A. B., Motor proteins and molecular motors: how to operate machines at the nanoscale, J. Phys.: Condens. Matter., 25 (2013) · doi:10.1088/0953-8984/25/46/463101
[7] Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L., Artificial molecular machines, Chem. Rev., 115, 10081-10206 (2015) · doi:10.1021/acs.chemrev.5b00146
[8] Pezzato, C.; Cheng, C.; Stoddart, J. F.; Astumian, R. D., Mastering the non-equilibrium assembly and operation of molecular machines, Chem. Soc. Rev., 46, 5491-5507 (2017) · doi:10.1039/c7cs00068e
[9] Brown, A. I.; Sivak, D. A., Theory of nonequilibrium free energy transduction by molecular machines, Chem. Rev., 120, 434-459 (2020) · doi:10.1021/acs.chemrev.9b00254
[10] Bartussek, R.; Hänggi, P.; Kissner, J. G., Periodically rocked thermal ratchets, Europhys. Lett., 28, 459-464 (1994) · doi:10.1209/0295-5075/28/7/001
[11] Doering, C. R.; Horsthemke, W.; Riordan, J., Nonequilibrium fluctuation-induced transport, Phys. Rev. Lett., 72, 2984-2987 (1994) · doi:10.1103/physrevlett.72.2984
[12] Hänggi, P.; Marchesoni, F.; Nori, F., Brownian motors, Ann. Phys., 14, 51-70 (2005) · Zbl 1160.82332 · doi:10.1002/andp.200410121
[13] Camargo, S.; Anteneodo, C., Impact of rough potentials in rocked ratchet performance, Physica A, 495, 114-125 (2018) · Zbl 1514.82178 · doi:10.1016/j.physa.2017.12.074
[14] Skaug, M. J.; Schwemmer, C.; Fringes, S.; Rawlings, C. D.; Knoll, A. W., Nanofluidic rocking Brownian motors, Science, 359, 1505-1508 (2018) · doi:10.1126/science.aal3271
[15] Schwemmer, C.; Fringes, S.; Duerig, U.; Ryu, Y. K.; Knoll, A. W., Experimental observation of current reversal in a rocking Brownian motor, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.104102
[16] Salgado-García, R., Noise-induced rectification in out-of-equilibrium structures, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.012128
[17] Prost, J.; Chauwin, J-F; Peliti, L.; Ajdari, A., Asymmetric pumping of particles, Phys. Rev. Lett., 72, 2652-2655 (1994) · doi:10.1103/physrevlett.72.2652
[18] Rousselet, J.; Salome, L.; Ajdari, A.; Prostt, J., Directional motion of Brownian particles induced by a periodic asymmetric potential, Nature, 370, 446-447 (1994) · doi:10.1038/370446a0
[19] Astumian, R. D.; Bier, M., Fluctuation driven ratchets: molecular motors, Phys. Rev. Lett., 72, 1766-1769 (1994) · doi:10.1103/physrevlett.72.1766
[20] Astumian, R. D., Thermodynamics and kinetics of a Brownian motor, Science, 276, 917-922 (1997) · doi:10.1126/science.276.5314.917
[21] Reimann, P., Current reversal in a white noise driven flashing ratchet, Phys. Rep., 290, 149-155 (1997) · doi:10.1016/s0370-1573(97)00064-1
[22] Parrondo, J. M R.; Harmer, G. P.; Abbott, D., New paradoxical games based on Brownian ratchets, Phys. Rev. Lett., 85, 5226-5229 (2000) · doi:10.1103/physrevlett.85.5226
[23] Makhnovskii, Y. A.; Rozenbaum, V. M.; Yang, D-Y; Lin, S. H.; Tsong, T. Y., Flashing ratchet model with high efficiency, Phys. Rev. E, 69 (2004) · doi:10.1103/physreve.69.021102
[24] Saakian, D. B.; Klümper, A., Exact solution of a ratchet with switching sawtooth potential, Phys. Rev. E, 97 (2018) · doi:10.1103/physreve.97.012153
[25] Luck, J-M, Parrondo games as disordered systems, Eur. Phys. J. B, 92, 180 (2019) · Zbl 1516.91008 · doi:10.1140/epjb/e2019-100259-4
[26] Zarrin, A.; Sivak, D. A.; Brown, A. I., Breaking time-reversal symmetry for ratchet models of molecular machines, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.062127
[27] Xu, X.; Zhang, Y., Motility and energetics of randomly flashing ratchets, J. Stat. Mech. (2021) · Zbl 1504.82038 · doi:10.1088/1742-5468/abe597
[28] Song, M. J.; Lee, J., An approximation by Parrondo games of the Brownian ratchet, Physica A, 563 (2021) · Zbl 07573990 · doi:10.1016/j.physa.2020.125454
[29] Gardiner, C., Stochastic Methods: A Handbook for the Natural and Social Sciences (2009), Berlin: Springer, Berlin · Zbl 1181.60001
[30] Sancho, J. M., Stochastic processes driven by dichotomous Markov noise: some exact dynamical results, J. Math. Phys., 25, 354-359 (1984) · Zbl 0542.60064 · doi:10.1063/1.526160
[31] Redner, S., A Guide to First-Passage Processes (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0980.60006
[32] Doering, C. R.; Gadoua, J. C., Resonant activation over a fluctuating barrier, Phys. Rev. Lett., 69, 2318-2321 (1992) · doi:10.1103/physrevlett.69.2318
[33] Zürcher, U.; Doering, C. R., Thermally activated escape over fluctuating barriers, Phys. Rev. E, 47, 3862-3869 (1993) · doi:10.1103/physreve.47.3862
[34] Van den Broeck, C., Simple stochastic model for resonant activation, Phys. Rev. E, 47, 4579-4580 (1993) · doi:10.1103/physreve.47.4579
[35] Bier, M.; Astumian, R. D., Matching a diffusive and a kinetic approach for escape over a fluctuating barrier, Phys. Rev. Lett., 71, 1649-1652 (1993) · doi:10.1103/physrevlett.71.1649
[36] Pechukas, P.; Hänggi, P., Rates of activated processes with fluctuating barriers, Phys. Rev. Lett., 73, 2772-2775 (1994) · doi:10.1103/physrevlett.73.2772
[37] Madureira, A. J R.; Hänggi, P.; Buonomano, V.; Rodrigues, W. A., Escape from a fluctuating double well, Phys. Rev. E, 51, 3849-3861 (1995) · doi:10.1103/physreve.51.3849
[38] Mantegna, R. N.; Spagnolo, B., Experimental investigation of resonant activation, Phys. Rev. Lett., 84, 3025-3028 (2000) · doi:10.1103/physrevlett.84.3025
[39] Novotný, T. c v.; Chvosta, P., Resonant activation phenomenon for non-Markovian potential-fluctuation processes, Phys. Rev. E, 63 (2000) · doi:10.1103/physreve.63.012102
[40] Dubkov, A. A.; Agudov, N. V.; Spagnolo, B., Noise-enhanced stability in fluctuating metastable states, Phys. Rev. E, 69 (2004) · doi:10.1103/physreve.69.061103
[41] Schmitt, C.; Dybiec, B.; Hänggi, P.; Bechinger, C., Stochastic resonance vs. resonant activation, Europhys. Lett., 74, 937-943 (2006) · doi:10.1209/epl/i2006-10052-6
[42] Szczepaniec, K.; Dybiec, B., Quantifying a resonant-activation-like phenomenon in non-Markovian systems, Phys. Rev. E, 89 (2014) · doi:10.1103/physreve.89.042138
[43] Spalding, C.; Doering, C. R.; Flierl, G. R., Resonant activation of population extinctions, Phys. Rev. E, 96 (2017) · doi:10.1103/physreve.96.042411
[44] Sekimoto, K., Stochastic Energetics (2010), Berlin: Springer, Berlin · Zbl 1201.82001
[45] Seifert, U., Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 75 (2012) · doi:10.1088/0034-4885/75/12/126001
[46] Shapiro, V. E.; Loginov, V. M., ‘Formulae of differentiation’ and their use for solving stochastic equations, Physica A, 91, 563-574 (1978) · doi:10.1016/0378-4371(78)90198-x
[47] Chvosta, P.; Pottier, N., Boundary problems for diffusion in a fluctuating potential, Physica A, 255, 332-346 (1998) · doi:10.1016/s0378-4371(98)00100-9
[48] Chvosta, P.; Reineker, P., Dynamics under the influence of semi-Markov noise, Physica A, 268, 103-120 (1999) · doi:10.1016/s0378-4371(99)00021-7
[49] Evans, M. R.; Majumdar, S. N., Diffusion with stochastic resetting, Phys. Rev. Lett., 106 (2011) · Zbl 1465.60070 · doi:10.1103/physrevlett.106.160601
[50] Fuchs, J.; Goldt, S.; Seifert, U., Stochastic thermodynamics of resetting, Europhys. Lett., 113 (2016) · doi:10.1209/0295-5075/113/60009
[51] Pal, A.; Rahav, S., Integral fluctuation theorems for stochastic resetting systems, Phys. Rev. E, 96 (2017) · doi:10.1103/physreve.96.062135
[52] Pal, A.; Prasad, V. V., First passage under stochastic resetting in an interval, Phys. Rev. E, 99 (2019) · doi:10.1103/physreve.99.032123
[53] Gupta, D.; Plata, C. A.; Pal, A., Work fluctuations and jarzynski equality in stochastic resetting, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.110608
[54] Evans, M. R.; Majumdar, S. N.; Schehr, G., Stochastic resetting and applications, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1514.82157 · doi:10.1088/1751-8121/ab7cfe
[55] Neri, I., Second law of thermodynamics at stopping times, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.040601
[56] Manzano, G., Thermodynamics of gambling demons, Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.080603
[57] Ryabov, A.; Chvosta, P., Single-file diffusion of externally driven particles, Phys. Rev. E, 83 (2011) · doi:10.1103/physreve.83.020106
[58] Ryabov, A.; Chvosta, P., Tracer dynamics in a single-file system with absorbing boundary, Phys. Rev. E, 89 (2014) · doi:10.1103/physreve.89.022132
[59] Lips, D.; Ryabov, A.; Maass, P., Brownian asymmetric simple exclusion process, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.160601
[60] Lips, D.; Ryabov, A.; Maass, P., Single-file transport in periodic potentials: the Brownian asymmetric simple exclusion process, Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.052121
[61] Grebenkov, D. S., First exit times of harmonically trapped particles: a didactic review, J. Phys. A: Math. Theor., 48 (2014) · Zbl 1314.82032 · doi:10.1088/1751-8113/48/1/013001
[62] Martínez, I. A.; Roldán, É.; Dinis, L.; Petrov, D.; Parrondo, J. M R.; Rica, R. A., Brownian carnot engine, Nat. Phys., 12, 67-70 (2016) · doi:10.1038/nphys3518
[63] Ciliberto, S., Experiments in stochastic thermodynamics: short history and perspectives, Phys. Rev. X, 7 (2017) · doi:10.1103/physrevx.7.021051
[64] Martínez, I. A.; Roldán, É.; Dinis, L.; Rica, R. A., Colloidal heat engines: a review, Soft Matter, 13, 22-36 (2017) · doi:10.1039/c6sm00923a
[65] Šiler, M., Diffusing up the hill: dynamics and equipartition in highly unstable systems, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.230601
[66] Paneru, G.; Kyu Pak, H., Colloidal engines for innovative tests of information thermodynamics, Adv. Phys. X, 5, 1823880 (2020) · doi:10.1080/23746149.2020.1823880
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.