×

Motility and energetics of randomly flashing ratchets. (English) Zbl 1504.82038

Summary: We consider randomly flashing ratchets, where the potential acting can be switched to another at random time instants with Poisson statistics. Using coupled Fokker-Planck equations, we formulate explicit expressions of mean velocity, dispersion and quantities measuring thermodynamics. How potential landscapes and transitions affect the motility and energetics is exemplified by numerical calculations on random on-off ratchets. Randomly flashing ratchets with shifted sawtooth potentials are further discussed. We find that the dynamics and output power of such system present symmetry w.r.t. the shift between the two potentials \(\Delta_{\max} + \Delta_{\min}\), which is the sum of the shift between the two peaks \(( \Delta_{\max})\) and the shift between the two bottoms \(( \Delta_{\min})\). The mean velocity and output power both reach the optimal performance at \(\Delta_{\max} + \Delta_{\min} = 1\), provided that the asymmetry \(\alpha_i\) of potential \(U_i\) implies a positive flux respectively, i.e.\(, \alpha_i > 0.5\) for \(i = 1, 2\).

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

References:

[1] Leibler S 1994 Moving forward noisily Nature370 412 · doi:10.1038/370412a0
[2] Astumian R D and Bier M 1994 Fluctuation driven ratchets: molecular motors Phys. Rev. Lett.72 1766 · doi:10.1103/physrevlett.72.1766
[3] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Directed transport of atoms in a Hamiltonian quantum ratchet Science326 1241 · doi:10.1126/science.1179546
[4] Fisher M E and Kolomeisky A B 1999 The force exerted by a molecular motor Proc. Natl Acad. Sci.96 6597 · doi:10.1073/pnas.96.12.6597
[5] Reimann P 2002 Brownian motors: noisy transport far from equilibrium Phys. Rep.361 57 · Zbl 1001.82097 · doi:10.1016/s0370-1573(01)00081-3
[6] Hänggi P and Marchesoni F 2009 Artificial Brownian motors: controlling transport on the nanoscale Rev. Mod. Phys.81 387 · doi:10.1103/revmodphys.81.387
[7] Kawaguchi K, Sasa S and Sagawa T 2014 Nonequilibrium dissipation-free transport in F1-ATPase and the thermodynamic role of asymmetric allosterism Biophys. J.106 2450 · doi:10.1016/j.bpj.2014.04.034
[8] Jülicher F, Ajdari A and Prost J 1997 Modeling molecular motors Rev. Mod. Phys.69 1269 · doi:10.1103/revmodphys.69.1269
[9] Spiechowicz J, Łuczka J and Hänggi P 2016 Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation Sci. Rep.6 30948 · doi:10.1038/srep30948
[10] Astumian R D 1997 Thermodynamics and kinetics of a Brownian motor Science276 917 · doi:10.1126/science.276.5314.917
[11] Cao F J, Dinis L and Parrondo J M R 2004 Feedback control in a collective flashing ratchet Phys. Rev. Lett.93 040603 · doi:10.1103/physrevlett.93.040603
[12] Kinderlehrer D and Kowalczyk M 2002 Diffusion-mediated transport and the flashing ratchet Arch. Ration. Mech. Anal.161 149 · Zbl 1065.76183 · doi:10.1007/s002050100173
[13] Rozenbaum V M, Makhnovskii Y A, Shapochkina I V, Sheu S Y, Yang D Y and Lin S H 2012 Adiabatically slow and adiabatically fast driven ratchets Phys. Rev. E 85 041116 · doi:10.1103/physreve.85.041116
[14] Germs W C, Roeling E M, van Ijzendoorn L J, Janssen R A J and Kemerink M 2013 Diffusion enhancement in on/off ratchets Appl. Phys. Lett.102 073104 · doi:10.1063/1.4793198
[15] Jarillo J, Villaluenga J P G and Cao F J 2018 Reliability of rectified transport: coherence and reproducibility of transport by open-loop and feedback-controlled Brownian ratchets Phys. Rev. E 98 032101 · doi:10.1103/physreve.98.032101
[16] Dinis L, Parrondo J M R and Cao F J 2005 Closed-loop control strategy with improved current for a flashing ratchet Europhys. Lett.71 536-41 · doi:10.1209/epl/i2005-10116-1
[17] Lipowsky R and Harms T 2000 Molecular motors and nonuniform ratchets Eur. Biophys. J.29 542 · doi:10.1007/s002490000092
[18] Kanada R, Shinagawa R and Sasaki K 2018 Diffusion enhancement of Brownian motors revealed by a solvable model Phys. Rev. E 98 062110 · doi:10.1103/physreve.98.062110
[19] Chen Y-d. 1997 Asymmetric cycling and biased movement of Brownian particles in fluctuating symmetric potentials Phys. Rev. Lett.79 3117 · doi:10.1103/physrevlett.79.3117
[20] Rozenbaum V M 2004 Mechanism for the appearance of a high-efficiency Brownian motor with fluctuating potential JETP Lett.79 388 · doi:10.1134/1.1772438
[21] Makhnovskii Y A, Rozenbaum V M, Yang D Y, Lin S H and Tsong T Y 2004 Flashing ratchet model with high efficiency Phys. Rev. E 69 021102 · doi:10.1103/physreve.69.021102
[22] Hänggi P, Marchesoni F and Nori F 2005 Brownian motors Ann. Phys.14 51 · Zbl 1160.82332 · doi:10.1002/andp.200410121
[23] Grimm A and Stark H 2011 Hydrodynamic interactions enhance the performance of Brownian ratchets Soft Matter7 3219 · doi:10.1039/c0sm01085e
[24] Prost J, Chauwin J-F, Peliti L and Ajdari A 1994 Asymmetric pumping of particles Phys. Rev. Lett.72 2652 · doi:10.1103/physrevlett.72.2652
[25] Kłosek M M and Cox R W 1999 Steady-state currents in sharp stochastic ratchets Phys. Rev. E 60 3727 · doi:10.1103/physreve.60.3727
[26] Rozenbaum V M, Korochkova T Y, Chernova A A and Dekhtyar M L 2011 Brownian motor with competing spatial and temporal asymmetry of potential energy Phys. Rev. E 83 051120 · doi:10.1103/physreve.83.051120
[27] Saakian D B and Klümper A 2018 Exact solution of a ratchet with switching sawtooth potential Phys. Rev. E 97 012153 · doi:10.1103/physreve.97.012153
[28] Rozenbaum V M, Korochkova T Y, Yang D Y, Lin S H and Tsong T Y 2005 Two approaches toward a high-efficiency flashing ratchet Phys. Rev. E 71 041102 · doi:10.1103/physreve.71.041102
[29] Parrondo J M R and de Cisneros B J 2002 Energetics of Brownian motors: a review Appl. Phys. A 75 179 · doi:10.1007/s003390201332
[30] Suzuki D and Munakata T 2003 Rectification efficiency of a Brownian motor Phys. Rev. E 68 021906 · doi:10.1103/physreve.68.021906
[31] Krishnan R, Chacko J, Sahoo M and Jayannavar A M 2006 Stokes efficiency of temporally rocked ratchets J. Stat. Mech. P06017 · doi:10.1088/1742-5468/2006/06/p06017
[32] Krishnan R, Roy S and Jayannavar A M 2005 Enhanced thermodynamic efficiency in time asymmetric ratchets J. Stat. Mech. P04012 · doi:10.1088/1742-5468/2005/04/p04012
[33] Seifert U 2012 Stochastic thermodynamics, fluctuation theorems and molecular machines Rep. Prog. Phys.75 126001 · doi:10.1088/0034-4885/75/12/126001
[34] Parmeggiani A, Jülicher F, Ajdari A and Prost J 1999 Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium Phys. Rev. E 60 2127 · doi:10.1103/physreve.60.2127
[35] Derrida B 1983 Velocity and diffusion constant of a periodic one-dimensional hopping model J. Stat. Phys.31 433 · doi:10.1007/bf01019492
[36] Zhang Y 2009 Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments Phys. Lett. A 373 2629 · Zbl 1231.82051 · doi:10.1016/j.physleta.2009.05.061
[37] Harms T and Lipowsky R 1997 Driven ratchets with disordered tracks Phys. Rev. Lett.79 2895 · doi:10.1103/physrevlett.79.2895
[38] Sasaki K 2003 Diffusion coefficients for two-state Brownian motors J. Phys. Soc. Japan72 2497 · Zbl 1063.60117 · doi:10.1143/jpsj.72.2497
[39] Parrondo J M R, Blanco J M, Cao F J and Brito R 1998 Efficiency of brownian motors Europhys. Lett.43 248 · doi:10.1209/epl/i1998-00348-5
[40] Machura L, Kostur M, Talkner P, Łuczka J, Marchesoni F and Hänggi P 2004 Brownian motors: current fluctuations and rectification efficiency Phys. Rev. E 70 061105 · doi:10.1103/physreve.70.061105
[41] Chauwin J-F, Ajdari A and Prost J 1994 Force-free motion in asymmetric structures: a mechanism without diffusive steps Europhys. Lett.27 421 · doi:10.1209/0295-5075/27/6/002
[42] Kanada R and Sasaki K 2000 Thermal ratchets with symmetric potentials J. Phys. Soc. Japan68 3759 · doi:10.1143/jpsj.68.3759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.