×

Higher order Calderón-Zygmund estimates for the \(p\)-Laplace equation. (English) Zbl 1435.35182

The authors study the regularity of weak solutions of the equation \[ \operatorname{div}(A(\nabla u)):=\operatorname{div}(|\nabla u|^{p-2} \nabla u)=\operatorname{div} F\text{ in }\Omega, \] where \(1 < p < \infty\), \(\Omega\) is an open set in \(\mathbb{R}^d\), \(u:\Omega \to \mathbb{R}^n\), and \(d, n \in \mathbb{N}\). In one of the main results it is shown that for \(p \geq 2\), \(d=2\), \(n=1\), and \(F \in L^{p'}(\Omega)\), a weak solution \(u \in W^{1,p}(\Omega)\) of the considered equation satisfies \[ |A(\nabla u)|_{\mathbf{B}^s_{\varrho,q}(B)}\lesssim |F|_{\mathbf{B}^s_{\varrho,q}(2B)} + |2B|^{-\frac{1}{p'}} \left\|A(\nabla u) - |2B|^{-1} \int_{2B}A(\nabla u)\,dx\right\|_{L^{p'}(2B)}, \] provided \(s>0\) and \(\varrho, q \in (0,\infty]\) are such that \(2\left(\frac{1}{\varrho}-\frac{1}{p'}\right)_+ < s < 1\), and a ball \(B\) is such that \(2B \subset \Omega\). Here \(\mathbf{B}^s_{\varrho,q}\) is the Besov space. If, in addition, \(\varrho<\infty\) and \(2\left(\frac{1}{q}-\frac{1}{p'}\right)_+ < s < 1\), then the same estimate on \(A(\nabla)\) is valid with \(\mathbf{B}^s_{\varrho,q}\) replaced by the Triebel-Lizorkin space \(\mathbf{F}^s_{\varrho,q}\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35B65 Smoothness and regularity of solutions to PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Araújo, D. J.; Teixeira, E. V.; Urbano, J. M., A proof of the \(C^{p^\prime}\)-regularity conjecture in the plane, Adv. Math., 316, 541-553 (2017) · Zbl 1379.35144
[2] Aronsson, G., On certain \(p\)-harmonic functions in the plane, Manuscr. Math., 61, 1, 79-101 (1988) · Zbl 0661.31016
[3] Avelin, B.; Kuusi, T.; Mingione, G., Nonlinear Calderón-Zygmund theory in the limiting case, Arch. Ration. Mech. Anal., 214, 2, 663-714 (2018) · Zbl 1390.35078
[4] Baernstein, A.; Kovalev, L. V., On Hölder regularity for elliptic equations of non-divergence type in the plane, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 4, 2, 295-317 (2005) · Zbl 1150.35021
[5] Breit, D.; Cianchi, A.; Diening, L.; Kuusi, T.; Schwarzacher, S., The \(p\)-Laplace system with right-hand side in divergence form: inner and up to the boundary pointwise estimates, Nonlinear Anal., 153, 200-212 (2017) · Zbl 1370.35064
[6] Breit, D.; Cianchi, A.; Diening, L.; Kuusi, T.; Schwarzacher, S., Pointwise Calderón-Zygmund gradient estimates for the \(p\)-laplace system, J. Math. Pures Appl. (2017) · Zbl 1370.35064
[7] Cianchi, A.; Maz’ya, V. G., Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech. Anal., 229, 2, 569-599 (2018) · Zbl 1398.35078
[8] Clop, A.; Giova, R.; Passarelli di Napoli, A., Besov regularity for solutions of \(p\)-harmonic equations, Adv. Nonlinear Anal., 8, 1, 762-778 (2017) · Zbl 1418.35149
[9] Cohen, A.; Dahmen, W.; DeVore, R. A., Adaptive wavelet methods for elliptic operator equations – convergence rates, Math. Comput., 70, 233, 27-75 (2001) · Zbl 0980.65130
[10] Dahlke, S.; Diening, L.; Hartmann, C.; Scharf, B.; Weimar, M., Besov regularity of solutions to the \(p\)-Poisson equation, Nonlinear Anal., 130, 298-329 (2016) · Zbl 1330.35189
[11] DeVore, R. A., Nonlinear approximation, Acta Numer., 7, 51-150 (1998) · Zbl 0931.65007
[12] DiBenedetto, E.; Manfredi, J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. Math., 115, 5, 1107-1134 (1993) · Zbl 0805.35037
[13] Diening, L.; Ettwein, F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20, 3, 523-556 (2008) · Zbl 1188.35069
[14] Diening, L.; Fornasier, M.; Wank, M., A relaxed iteration for the \(p\)-poisson problem (2017), ArXiv e-prints · Zbl 1442.65362
[15] Diening, L.; Kaplický, P.; Schwarzacher, S., BMO estimates for the \(p\)-Laplacian, Nonlinear Anal., 75, 2, 637-650 (2012) · Zbl 1233.35056
[16] Diening, L.; Kreuzer, Ch., Linear convergence of an adaptive finite element method for the \(p\)-Laplacian equation, SIAM J. Numer. Anal., 46, 614-638 (2008) · Zbl 1168.65060
[17] Diening, L.; Lengeler, D.; Stroffolini, B.; Verde, A., Partial regularity for minimizers of quasi-convex functionals with general growth, SIAM J. Math. Anal., 44, 5, 3594-3616 (2012) · Zbl 1257.49037
[18] Diening, L.; Stroffolini, B.; Verde, A., Everywhere regularity of functionals with \(φ\)-growth, Manuscr. Math., 129, 4, 449-481 (2009) · Zbl 1168.49035
[19] Dobrowolski, M., On finite element methods for nonlinear elliptic problems on domains with corners, (Singularities and Constructive Methods for Their Treatment. Singularities and Constructive Methods for Their Treatment, Oberwolfach, 1983. Singularities and Constructive Methods for Their Treatment. Singularities and Constructive Methods for Their Treatment, Oberwolfach, 1983, Lecture Notes in Math., vol. 1121 (1985), Springer: Springer Berlin), 85-103 · Zbl 0564.65072
[20] Dolzmann, G.; Müller, S., Estimates for Green’s matrices of elliptic systems by \(L^p\) theory, Manuscr. Math., 88, 2, 261-273 (1995) · Zbl 0846.35040
[21] Hamburger, C., Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431, 7-64 (1992) · Zbl 0776.35006
[22] Hartmann, C.; Weimar, M., Besov regularity of solutions to the \(p\)-Poisson equation in the vicinity of a vertex of a polygonal domain, Results Math., 73, 1, Article 41 pp. (2018) · Zbl 1387.35043
[23] Iwaniec, T.; Manfredi, J., Regularity of \(p\)-harmonic functions on the plane, Rev. Mat. Iberoam., 5, 1-2, 1-19 (1989) · Zbl 0805.31003
[24] Kuusi, T.; Mingione, G., Linear potentials in nonlinear potential theory, Arch. Ration. Mech. Anal., 207, 1, 215-246 (2013) · Zbl 1266.31011
[25] Kuusi, T.; Mingione, G., Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20, 4, 929-1004 (2018) · Zbl 1394.35206
[26] Lindgren, E.; Lindqvist, P., Regularity of the \(p\)-Poisson equation in the plane, J. Anal. Math., 132, 1, 217-228 (2017) · Zbl 1379.31006
[27] Runst, T.; Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3 (1996), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin, New York · Zbl 0873.35001
[28] Triebel, H., Local approximation spaces, Z. Anal. Anwend., 8, 261-288 (1989) · Zbl 0695.46015
[29] Uhlenbeck, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138, 219-240 (1977) · Zbl 0372.35030
[30] Ural’ceva, N. N., Degenerate quasilinear elliptic systems, Zap. Nauč. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, 184-222 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.