×

A relaxed Kačanov iteration for the \(p\)-Poisson problem. (English) Zbl 1442.65362

Summary: In this paper we introduce and analyze an iteratively re-weighted algorithm, that allows to approximate the weak solution of the \(p\)-Poisson problem for \(1 < p \leq 2\) by iteratively solving a sequence of linear elliptic problems. The algorithm can be interpreted as a relaxed Kačanov iteration, as so-called in the specific literature of the numerical solution of quasi-linear equations. The main contribution of the paper is proving that the algorithm converges at least with an algebraic rate.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35D30 Weak solutions to PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Acerbi, E., Fusco, N.: An approximation lemma for \(W^{1,p}\) functions. In: Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), Oxford Univ. Press, New York, pp. 1-5 (1988) · Zbl 0644.46026
[2] Belenki, L.; Diening, L.; Kreuzer, C., Optimality of an adaptive finite element method for the \(p\)-Laplacian equation, IMA J. Numer. Anal., 32, 2, 484-510 (2012) · Zbl 1245.65156 · doi:10.1093/imanum/drr016
[3] Braides, A., \( \Gamma \)-Convergence for Beginners (2002), Oxford: Oxford University Press, Oxford · Zbl 1198.49001
[4] Bulíček, M.; Diening, L.; Schwarzacher, S., Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Anal. PDE, 9, 5, 1115-1151 (2016) · Zbl 1347.35117 · doi:10.2140/apde.2016.9.1115
[5] Canuto, C.; Urban, K., Adaptive optimization of convex functionals in Banach spaces, SIAM J. Numer. Anal., 42, 5, 2043-2075 (2005) · Zbl 1081.65053 · doi:10.1137/S0036142903429730
[6] Chambolle, A.; Lions, PL, Image recovery via total variation minimization and related problems, Numer. Math., 76, 2, 167-188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[7] Cianchi, A.; Maz’ya, V., Global Lipschitz regularity for a class of quasilinear elliptic equations, Commun. Partial Differ. Equ., 36, 1, 100-133 (2010) · Zbl 1220.35065 · doi:10.1080/03605301003657843
[8] Cruz-Uribe, D.; Martell, JM; Pérez, C., Extrapolation from \(A_\infty\) weights and applications, J. Funct. Anal., 213, 2, 412-439 (2004) · Zbl 1052.42016 · doi:10.1016/j.jfa.2003.09.002
[9] Dal Maso, G., An Introduction to \(\Gamma \)-Convergence (1993), Boston: Birkhäuser Boston Inc, Boston · Zbl 0816.49001
[10] Daubechies, I.; DeVore, R.; Fornasier, M.; Güntürk, CS, Iteratively reweighted least squares minimization for sparse recovery, Commun. Pure Appl. Math., 63, 1, 1-38 (2010) · Zbl 1202.65046 · doi:10.1002/cpa.20303
[11] Diening, L.; Ettwein, F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Mathematicum, 20, 3, 523-556 (2008) · Zbl 1188.35069 · doi:10.1515/FORUM.2008.027
[12] Diening, L.; Kreuzer, C., Linear convergence of an adaptive finite element method for the \(p\)-Laplacian equation, SIAM J. Numer. Anal., 46, 614-638 (2008) · Zbl 1168.65060 · doi:10.1137/070681508
[13] Diening, L.; Kreuzer, C.; Süli, E., Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, SIAM J. Numer. Anal., 51, 2, 984-1015 (2013) · Zbl 1268.76030 · doi:10.1137/120873133
[14] Ebmeyer, C., Mixed boundary value problems for nonlinear elliptic systems with \(p\)-structure in polyhedral domains, Mathematische Nachrichten, 236, 1, 91-108 (2002) · Zbl 1147.35309 · doi:10.1002/1522-2616(200203)236:1<91::AID-MANA91>3.0.CO;2-1
[15] Edmunds, D.; Evans, W.; Karadzhov, G., Sharp estimates of the embedding constants for Besov spaces, Rev. Mat. Complut., 19, 1, 161-182 (2006) · Zbl 1122.46018
[16] Fornasier, M.; Rauhut, H.; Ward, R., Low-rank matrix recovery via iteratively reweighted least squares minimization, SIAM J. Optim., 21, 4, 1614-1640 (2011) · Zbl 1236.65044 · doi:10.1137/100811404
[17] Garau, EM; Morin, P.; Zuppa, C., Convergence of an adaptive Kačanov FEM for quasi-linear problems, Appl. Numer. Math., 61, 4, 512-529 (2011) · Zbl 1211.65154 · doi:10.1016/j.apnum.2010.12.001
[18] Han, W.; Jensen, S.; Shimansky, I., The Kačanov method for some nonlinear problems, Appl. Numer. Math., 24, 1, 57-79 (1997) · Zbl 0878.65099 · doi:10.1016/S0168-9274(97)00009-3
[19] Krasnosel’skiĭ, M.; Rutickiĭ, Y., Convex Functions and Orlicz Spaces (1961), Cambridge: Cambridge Univ Press, Cambridge · Zbl 0095.09103
[20] Kufner, A.; Oldrich, J.; Fučík, S., Function Spaces (1977), Leyden: Noordhoff International Pub, Leyden · Zbl 0364.46022
[21] Ladyzhenskaya, O., New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Stek. Inst. Math., 102, 95-118 (1967)
[22] Lindqvist, P.: Notes on the \(p\)-laplace equation. http://www.math.ntnu.no/lqvist/p-laplace.pdf (2006). Accessed 28 Nov 2017 · Zbl 1256.35017
[23] Peetre, J., Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble), 16, 1, 279-317 (1966) · Zbl 0151.17903 · doi:10.5802/aif.232
[24] Ružička, M., Diening, L.: Non-Newtonian Fluids and Function Spaces. NAFSA 8-Nonlinear Analysis. Function Spaces and Applications, vol. 8, pp. 94-143. Czech. Acad. Sci, Prague (2007) · Zbl 1289.35104
[25] Stein, E.; Murphy, T., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton mathematical series: Princeton, Princeton mathematical series · Zbl 0821.42001
[26] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1978), Amsterdam: North-Holland Pub. Co, Amsterdam · Zbl 0387.46033
[27] Vogel, CR; Oman, M., Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7, 6, 813-824 (1998) · Zbl 0993.94519 · doi:10.1109/83.679423
[28] Wank, M.: A Kačanov Type Iteration for the \(p\)-Poisson Problem. Doctoral thesis, University of Osnabrück (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.