×

Spatio-temporal steady-state analysis in a prey-predator model with saturated hunting cooperation and chemotaxis. (English) Zbl 07873861

Summary: In this paper, we propose a diffusive prey-predator model with saturated hunting cooperation and predator-taxis. We first establish the global classical solvability and boundedness, and provide some sufficient conditions to assure the existence of a unique positive homogeneous steady state and the global uniform asymptotic stability of the predator-free homogeneous steady state. Secondly, we study the pattern formation mechanism and reveal that pattern formation is driven by the joint effect of predator-taxis, hunting cooperation, and slow diffusivity of predators. Moreover, we find that a strong predator-taxis can annihilate the spatiotemporal patterns, but a weak predator-taxis supports the pattern formation when diffusion-driven instability is present in the model without predator-taxis. However, if diffusion-driven instability is absent, predator-taxis cannot destabilize the unique positive spatially homogeneous steady state. Additionally, we highlight that spatially heterogeneous steady states do not exist when the diffusion coefficient ratio of predators to prey is sufficiently large under specific parametric conditions. To explore the various types of spatially heterogeneous steady states, we derive amplitude equations based on the weakly nonlinear analysis theory. Finally, numerical simulations, including the hexagonal pattern, stripe pattern, a mixed pattern combining hexagons and stripes, and the square pattern, are presented to illustrate the theoretical results.

MSC:

35B36 Pattern formations in context of PDEs
34C23 Bifurcation theory for ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
65N06 Finite difference methods for boundary value problems involving PDEs
92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Lotka, A. J., Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc., 42, 8, 1595-1599, 1920 · doi:10.1021/ja01453a010
[2] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. Accad. Lincei., 6, 31-113, 1926 · JFM 52.0450.06
[3] Alves, M. T.; Hilker, F., Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419, 13-22, 2017 · Zbl 1370.92151 · doi:10.1016/j.jtbi.2017.02.002
[4] Stephens, P. A.; Sutherland, W. J.; Freckleton, R. P., What is the Allee effect?, Oikos, 87, 1, 185-190, 1999 · doi:10.2307/3547011
[5] Xiao, D.; Ruan, S., Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 4, 1445-1472, 2001 · Zbl 0986.34045 · doi:10.1137/S0036139999361896
[6] Kang, Y.; Lauren, W., Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67, 1227-1259, 2013 · Zbl 1286.34071 · doi:10.1007/s00285-012-0584-z
[7] Murray, J. D., Mathematical Biology: I. An Introduction, 2002, Berlin: Springer, Berlin · Zbl 1006.92001 · doi:10.1007/b98868
[8] Kondo, S.; Rihito, A., A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376, 765-768, 1995 · doi:10.1038/376765a0
[9] Dey, S.; Banerjee, M.; Ghorai, S., Bifurcation analysis and spatio-temporal patterns of a prey-predator model with hunting cooperation, Int. J. Bifurc. Chaos, 32, 11, 2022 · Zbl 1501.92110 · doi:10.1142/S0218127422501735
[10] Klausmeier, C. A., Regular and irregular patterns in semiarid vegetation, Science, 284, 5421, 1826-1828, 1999 · doi:10.1126/science.284.5421.1826
[11] Cangelosi, R. A.; Wollkind, D. J.; Kealy-Dichone, B. J.; Chaiya, I., Nonlinear stability analyses of Turing patterns for a mussel-algae model, J. Math. Biol., 70, 1249-1294, 2015 · Zbl 1456.35028 · doi:10.1007/s00285-014-0794-7
[12] Turing, A. M., The chemical basis of morphogenesis, Bull. Math. Biol., 52, 1-2, 153-197, 1990 · doi:10.1016/S0092-8240(05)80008-4
[13] Bednarz, J. C., Cooperative hunting Harris’ hawks (Parabuteo unicinctus), Science, 239, 1525-1527, 1988 · doi:10.1126/science.239.4847.1525
[14] Creel, S.; Nancy, M. C., Communal hunting and pack size in African wild dogs, Lycaon pictus, Anim. Behav., 50, 5, 1325-1339, 1995 · doi:10.1016/0003-3472(95)80048-4
[15] Scheel, D.; Craig, P., Group hunting behaviour of lions: a search for cooperation, Anim. Behav., 41, 4, 697-709, 1991 · doi:10.1016/S0003-3472(05)80907-8
[16] Pooley, A. C.; Carl, G., The Nile crocodile, Sci. Am., 234, 4, 114-125, 1976 · doi:10.1038/scientificamerican0476-114
[17] Lett, C.; Pierre, A.; Jean-Michel, G., Continuous cycling of grouped vs. solitary strategy frequencies in a predator-prey model, Theor. Popul. Biol., 65, 263-270, 2004 · Zbl 1109.92054 · doi:10.1016/j.tpb.2003.10.005
[18] Farine, D. R., The role of social and ecological processes in structuring animal populations: a case study from automated tracking of wild birds, R. Soc. Open Sci., 2, 4, 2015 · doi:10.1098/rsos.150057
[19] Janssen, M. A.; Kim, H., Benefits of grouping and cooperative hunting among Ache hunter-gatherers: insights from an agent-based foraging model, Hum. Ecol., 42, 823-835, 2014 · doi:10.1007/s10745-014-9693-1
[20] Herbert-Read, J. E.; Romanczuk, P.; Krause, S., Proto-cooperation: group hunting sailfish improve hunting success by alternating attacks on grouping prey, Proc. - Royal Soc., Biol. Sci., 283, 1842, 2016
[21] Han, R.; Dey, S.; Banerjee, M., Spatio-temporal pattern selection in a prey-predator model with hunting cooperation and Allee effect in prey, Chaos Solitons Fractals, 171, 2023 · doi:10.1016/j.chaos.2023.113441
[22] Berec, L., Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72, 94-121, 2010 · Zbl 1184.92048 · doi:10.1007/s11538-009-9439-1
[23] Foster, K. W.; Smyth, R. D., Light antennas in phototactic algae, Microbiol. Rev., 44, 4, 572-630, 1980 · doi:10.1128/mr.44.4.572-630.1980
[24] Ghorai, S.; Hill, N. A., Penetrative phototactic bioconvection, Phys. Fluids, 17, 7, 2005 · Zbl 1187.76181 · doi:10.1063/1.1947807
[25] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a Chemotaxis system, J. Differ. Equ., 72, 1, 1-27, 1988 · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[26] Friedman, A.; Tello, J. I., Stability of solutions of Chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272, 1, 138-163, 2002 · Zbl 1025.35005 · doi:10.1016/S0022-247X(02)00147-6
[27] Issa, T. B.; Shen, W., Persistence, coexistence and extinction in two species Chemotaxis models on bounded heterogeneous environments, J. Dyn. Differ. Equ., 31, 4, 1839-1871, 2019 · Zbl 1439.35491 · doi:10.1007/s10884-018-9686-7
[28] Lee, J. M.; Hillen, T.; Lewis, M. A., Pattern formation in prey-taxis systems, J. Biol. Dyn., 3, 551-573, 2009 · Zbl 1315.92064 · doi:10.1080/17513750802716112
[29] Ma, M. J.; Ou, C. H.; Wang, Z. A., Stationary solutions of a volume-filling Chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72, 3, 740-766, 2012 · Zbl 1259.35031 · doi:10.1137/110843964
[30] Jin, H.-Y.; Wang, Z.-A., Global stability of prey-taxis systems, J. Differ. Equ., 262, 1257-1290, 2017 · Zbl 1364.35143 · doi:10.1016/j.jde.2016.10.010
[31] Wang, J.; Wang, M., Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69, 2018 · Zbl 1393.35105 · doi:10.1007/s00033-018-0960-7
[32] Xiang, T., Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal., Real World Appl., 39, 278-299, 2018 · Zbl 1516.35096 · doi:10.1016/j.nonrwa.2017.07.001
[33] Wu, S.; Wang, J.; Shi, J. P., Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28, 2275-2312, 2018 · Zbl 1411.35171 · doi:10.1142/S0218202518400158
[34] Wang, X.; Zou, X. F., Pattern formation of predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15, 775-805, 2018 · Zbl 1406.92530 · doi:10.3934/mbe.2018035
[35] Dai, F.; Liu, B., Global solution for a general cross-diffusion two-competitive-predator and one-prey system with predator-taxis, Commun. Nonlinear Sci. Numer. Simul., 89, 2020 · Zbl 1450.35139 · doi:10.1016/j.cnsns.2020.105336
[36] Maini, P. K.; Myerscough, M. R.; Winter, K. H., Bifurcating spatially heterogeneous solutions in a Chemotaxis model for biological pattern generation, Bull. Math. Biol., 53, 701-719, 1991 · Zbl 0725.92004 · doi:10.1016/S0092-8240(05)80229-0
[37] Sleeman, B. D.; Ward, M. J.; Wei, J. C., The existence and stability of spike patterns in a Chemotaxis model, SIAM J. Appl. Math., 65, 3, 790-817, 2005 · Zbl 1073.35118 · doi:10.1137/S0036139902415117
[38] Myerscough, M. R.; Maini, P. K.; Painter, K. J., Pattern formation in a generalized chemotactic model, Bull. Math. Biol., 60, 1, 1-26, 1998 · Zbl 1002.92511 · doi:10.1006/bulm.1997.0010
[39] Banerjee, M.; Petrovskii, S., Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theor. Ecol., 4, 37-53, 2011 · doi:10.1007/s12080-010-0073-1
[40] Natalia, S.; Tyutyunov, Y.; Arditi, R., The role of prey taxis in biological control: a spatial theoretical model, Am. Nat., 162, 1, 61-76, 2003 · doi:10.1086/375297
[41] Zhang, Y.; Xia, L., Pattern formation in rosenzweig-macarthur model with prey-taxis, Int. J. Numer. Anal. Model., 16, 1, 97-115, 2019 · Zbl 1408.92026
[42] Amann, H., Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems, Differ. Integral Equ., 3, 13-75, 1990 · Zbl 0729.35062
[43] Amann, H., Dynamic theory of quasilinear parabolic systems III. Global existence, Math. Z., 202, 219-250, 1989 · Zbl 0702.35125 · doi:10.1007/BF01215256
[44] Alikakos, N. D., \(L^p\) bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equ., 4, 827-868, 1979 · Zbl 0421.35009 · doi:10.1080/03605307908820113
[45] Henry, D., Geometric Theory of Semilinear Parabolic Equations, 1981, Berlin: Springer, Berlin · Zbl 0456.35001 · doi:10.1007/BFb0089647
[46] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a Chemotaxis system, J. Differ. Equ., 215, 52-107, 2005 · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[47] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[48] Ye, Q. X.; Li, Z. Y.; Wang, M. X.; Wu, Y. P., Introduction to Reaction-Diffusion Equations, 2011, Beijing: Science Press, Beijing
[49] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species Chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583, 2016 · Zbl 1345.35117 · doi:10.1512/iumj.2016.65.5776
[50] Han, R., Global classical solvability and stabilization in a reaction-diffusion intraguild predation model with Chemotaxis, Z. Angew. Math. Phys., 73, 1-29, 2022 · Zbl 1492.35042 · doi:10.1007/s00033-022-01777-x
[51] Hernandez, J., Some existence and stability results for solutions of reaction-diffusion systems with nonlinear boundary conditions, Nonlinear Differential Equations: Invariance, Stability, and Bifurcation, 161-173, 1981, San Diego: Academic Press, San Diego · Zbl 0467.35047 · doi:10.1016/B978-0-12-508780-3.50019-5
[52] Lin, C. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a Chemotaxis system, J. Differ. Equ., 72, 1-27, 1988 · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[53] Lou, Y.; Ni, W. M., Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equ., 154, 157-190, 1999 · Zbl 0934.35040 · doi:10.1006/jdeq.1998.3559
[54] Han, R.; Guin, L. N.; Dai, B., Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlinear Anal., Real World Appl., 60, 2021 · Zbl 1464.35021 · doi:10.1016/j.nonrwa.2021.103311
[55] Cross, M.; Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems, 2009, New York: Cambridge University Press, New York · Zbl 1177.82002 · doi:10.1017/CBO9780511627200
[56] Ouyang, Q., Pattern Formation in Reaction-Diffusion Systems, 2000, Shanghai: Shanghai Scientific and Technological Education Publishing House, Shanghai
[57] Han, R.; Dai, B., Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal., Real World Appl., 45, 822-853, 2019 · Zbl 1406.37064 · doi:10.1016/j.nonrwa.2018.05.018
[58] Han, R.; Mandal, G.; Guin, L.; Chakravarty, S., Dynamical response of a reaction-diffusion predator-prey system with cooperative hunting and prey refuge, J. Stat. Mech. Theory Exp., 10, 2022 · Zbl 1539.92098 · doi:10.1088/1742-5468/ac946d
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.