×

Distributed-order wave equations with composite time fractional derivative. (English) Zbl 1513.35534

Summary: In this paper we investigate the solution of generalized distributed-order wave equations with composite time fractional derivative and external force, by using the Fourier-Laplace transform method. We represent the corresponding solutions in terms of infinite series in three parameter (Prabhakar), Mittag-Leffler and Fox \(H\)-functions, as well as in terms of the so-called Prabhakar integral operator. Generalized uniformly distributed-order wave equation is analysed by using the Tauberian theorem, and the mean square displacement is graphically represented by applying a numerical Laplace inversion algorithm. The numerical results and asymptotic behaviors are in good agreement. Some interesting examples of distributed-order wave equations with special external forces by using the Dirac delta function are also considered.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
40E05 Tauberian theorems
Full Text: DOI

References:

[1] Ali, I.; Malik, N. A., Hilfer fractional advection-diffusion equations with power-law initial condition: A numerical study using variational iteration method, Comput. Math. Appl., 68, 1161-1179 (2014) · Zbl 1367.35194 · doi:10.1016/j.camwa.2014.08.021
[2] Bulavatsky, V. M., Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer-Prabhakar derivative, Cybern. Syst. Anal., 53, 204-216 (2017) · Zbl 1380.93038 · doi:10.1007/s10559-017-9920-z
[3] Cai, W.; Chen, W.; Xu, W., Fractional modeling of Pasternak-type viscoelastic foundation, Mech. Time-Depend. Mater., 21, 119-131 (2017) · doi:10.1007/s11043-016-9321-0
[4] Caputo, M., Elasticità e Dissipazione, Zanichelli, Bologna, 1969.
[5] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002) · doi:10.1103/PhysRevE.66.046129
[6] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M.; Gonchar, V. Yu., Distributed order fractional diffusion equation, Fract. Calc. Appl. Anal., 6, 259-279 (2003) · Zbl 1089.60046
[7] Diethelm, K.; Ford, N. J., Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225, 96-104 (2009) · Zbl 1159.65103 · doi:10.1016/j.cam.2008.07.018
[8] Dubbeldam, J. L.A.; Tomovski, Z.; Sandev, T., Space-time fractional Schrödinger equation with composite time fractional derivative, Fract. Calc. Appl. Anal., 18, 1179-1200 (2015) · Zbl 1331.35366 · doi:10.1515/fca-2015-0068
[9] Durbin, F., Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method, Comput. J., 17, 371-376 (1974) · Zbl 0288.65072 · doi:10.1093/comjnl/17.4.371
[10] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcedential Functions, Vol. 3 (1955), McGraw-Hill: McGraw-Hill, New York · Zbl 0064.06302
[11] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. II (1968), Wiley: Wiley, New York · Zbl 0155.23101
[12] Furati, K. M.; Kassim, M. D.; Tatar, N., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64, 1616-1626 (2012) · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[13] Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z., Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242, 576-589 (2014) · Zbl 1334.26008
[14] Ghanam, R. A.; Malik, N.; Tatar, N., Transparent boundary conditions for a diffusion problem modified by Hilfer derivative, J. Math. Sci. Univ. Tokyo, 21, 129-152 (2014) · Zbl 1331.35367
[15] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific, Singapore · Zbl 0998.26002
[16] Hilfer, R., Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284, 399-408 (2002) · doi:10.1016/S0301-0104(02)00670-5
[17] Hilfer, R., On fractional relaxation, Fractals, 11, 251-257 (2003) · Zbl 1140.82315 · doi:10.1142/S0218348X03001914
[18] Hilfer, R.; Luchko, Y.; Tomovski, Z., Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12, 299-318 (2009) · Zbl 1182.26011
[19] Liang, J.; Chen, Y. Q., Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems, Int. J. Control, 79, 1462-1470 (2006) · Zbl 1125.65364 · doi:10.1080/00207170600726493
[20] Liemert, A.; Sandev, T.; Kantz, H., Generalized Langevin equation with tempered memory kernel, Physica. A., 466, 356-369 (2017) · Zbl 1400.82195 · doi:10.1016/j.physa.2016.09.018
[21] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models (2010), Imperial College Press: Imperial College Press, London · Zbl 1210.26004
[22] Mainardi, F.; Paradisi, P., Fractional diffusive waves, J. Comput. Acoust., 9, 1417-1436 (2001) · Zbl 1360.76272 · doi:10.1142/S0218396X01000826
[23] Mallet, A., Numerical inversion of Laplace transform, Wolfram Library Archive, Item 0210-968 (2000).
[24] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The H-function: Theory and Applications (2010), Springer: Springer, New York · Zbl 1223.85008
[25] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[26] Nigmatullin, R. R., Fractional integral and its physical interpretation, Theor. Math. Phys., 90, 242-251 (1992) · Zbl 0795.26007 · doi:10.1007/BF01036529
[27] Paneva-Konovska, J., Convergence of series in three parametric Mittag-Leffler functions, Math. Slovaca, 64, 73-84 (2014) · Zbl 1324.33015 · doi:10.2478/s12175-013-0188-0
[28] Paneva-Konovska, J., From Bessel to Multi-Index Mittag-Leffler Functions: Enumerable Families (2016), World Scientific: World Scientific, London · Zbl 1353.33001
[29] Paneva-Konovska, J., Overconvergence of series in generalized Mittag-Leffler functions, Fract. Calc. Appl. Anal., 20, 506-520 (2017) · Zbl 1364.33020 · doi:10.1515/fca-2017-0026
[30] Polito, F.; Tomovski, Z., Some properties of Prabhakar-type fractional calculus operators, Frac. Diff. Calc., 6, 73-94 (2016) · Zbl 1424.26017
[31] Prabhakar, T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[32] Sandev, T.; Tomovski, Z., The general time fractional wave equation for a vibrating string, J. Phys. A: Math. Theoret., 43 (2010) · Zbl 1379.74012 · doi:10.1088/1751-8113/43/5/055204
[33] Sandev, T.; Metzler, R.; Tomovski, Z., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A: Math. Theoret., 44 (2011) · Zbl 1301.82042 · doi:10.1088/1751-8113/44/25/255203
[34] Sandev, T.; Tomovski, Z.; Dubbeldam, J. L.A., Generalized Langevin equation with a three parameter Mittag-Leffler noise, Physica. A., 390, 3627-3636 (2011) · doi:10.1016/j.physa.2011.05.039
[35] Sandev, T.; Tomovski, Z.; Crnkovic, B., Generalized distributed order diffusion equations with composite time fractional derivative, Comput. Math. Appl., 73, 1028-1040 (2017) · Zbl 1409.35227 · doi:10.1016/j.camwa.2016.07.009
[36] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative, Axioms, 3, 320-334 (2014) · Zbl 1515.35324 · doi:10.3390/axioms3030320
[37] Saxena, R. K.; Tomovski, Z.; Sandev, T., Fractional Helmholtz and fractional wave equations with Riesz-Feller and generalized Riemann-Liouville fractional derivatives, Eur. J. Pure Appl. Math., 7, 312-334 (2014) · Zbl 1389.35312
[38] Saxena, R.K., Mathai, A.M., and Haubold, H.J., Computable solutions of fractional reaction-diffusion equations associated with generalized Riemann-Liouville fractional derivatives of fractional orders, preprint (2015). Available at arXiv:1502.06127v1.
[39] Saxena, R. K.; Garra, R.; Orsingher, E., Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives, Integral Transform. Spec. Funct., 27, 30-42 (2015) · Zbl 1337.26015 · doi:10.1080/10652469.2015.1092142
[40] Srivastava, H. M.; Tomovski, Z., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211, 198-210 (2009) · Zbl 1432.30022
[41] Sun, H. G.; Zhang, Y.; Chen, W.; Reeves, D. M., Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contaminant Hydrol., 157, 47-58 (2014) · doi:10.1016/j.jconhyd.2013.11.002
[42] Tomovski, Z., Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator, Nonlinear Anal., 75, 3364-3384 (2012) · Zbl 1241.33020 · doi:10.1016/j.na.2011.12.034
[43] Tomovski, Z.; Sandev, T., Effects of a fractional friction with power-law memory kernel on string vibrations, Comput. Math. Appl., 62, 1554-1561 (2011) · Zbl 1228.35246 · doi:10.1016/j.camwa.2011.04.042
[44] Tomovski, Z.; Hilfer, R.; Srivastava, H. M., Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transform. Spec. Funct., 21, 797-814 (2010) · Zbl 1213.26011 · doi:10.1080/10652461003675737
[45] Tomovski, Z.; Sandev, T.; Metzler, R.; Dubbeldam, J., Generalized space-time fractional diffusion equation with composite fractional time derivative, Physica. A., 391, 2527-2542 (2012) · doi:10.1016/j.physa.2011.12.035
[46] Wei, S.; Chen, W.; Zhang, J., Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete, Eur. J. Environ. Civil Eng., 21, 319-331 (2017) · doi:10.1080/19648189.2015.1116467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.