×

Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. (English) Zbl 1496.74077


MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K25 Shells
74M25 Micromechanics of solids
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Markov, M, Rezaei, E, Sadeghi, SN, et al.Thermoelectric properties of semimetals. arXiv preprint arXiv:1905.08282, 2019.
[2] Ebrahimi, F.; Daman, M.; Jafari, A., Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment, Smart Struct Syst, 20, 709-728 (2017)
[3] Dezfuli, AA; Shokouhmand, A.; Oveis, AH, Reduced complexity and near optimum detector for linear-frequency-modulated and phase-modulated LPI radar signals, IET Radar, Sonar Navig, 13, 593-600 (2018) · doi:10.1049/iet-rsn.2018.5271
[4] Shokrgozar, A.; Safarpour, H.; Habibi, M., Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 0954406219883312 (2019)
[5] Nazarimofrad, E.; Shokrgozar, A., Seismic performance of steel braced frames with self-centering buckling-restrained brace utilizing superelastic shape memory alloys, The Struct Des Tall Spec Buildings, e1666 (2019)
[6] Shokrgozar, A, Mashal, M.The Mw 5.3 Sulphur Peak Earthquake in Soda Springs, Idaho: Perspectives from Earthquake Engineering, in Structures Congress 2019: Buildings and Natural Disasters, 2019, pp. 306-320.
[7] Shi, G.; Araby, S.; Gibson, CT, Graphene platelets and their polymer composites: fabrication, structure, properties, and applications, Adv Funct Mater, 28, 1706705 (2018) · doi:10.1002/adfm.201706705
[8] Sun, J.; Zhao, J., Multi-layer graphene reinforced nano-laminated WC-Co composites, Mater Sci Eng: A, 723, 1-7 (2018) · doi:10.1016/j.msea.2018.03.040
[9] Nieto, A.; Lahiri, D.; Agarwal, A., Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering, Mater Sci Eng: A, 582, 338-346 (2013) · doi:10.1016/j.msea.2013.06.006
[10] Rafiee, MA; Rafiee, J.; Wang, Z., Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884-3890 (2009) · doi:10.1021/nn9010472
[11] Habibi, M.; Hashemi, R.; Ghazanfari, A., Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending, Proc Inst Mech Eng, Part L: J Mater: Des Appl, 232, 625-636 (2018)
[12] Habibi, M.; Hashemi, R.; Tafti, MF, Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding, J Manuf Process, 31, 310-323 (2018) · doi:10.1016/j.jmapro.2017.11.009
[13] Habibi, M.; Hashemi, R.; Sadeghi, E., Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures, J Mater Eng Perform, 25, 382-389 (2016) · doi:10.1007/s11665-016-1882-1
[14] Habibi, M.; Ghazanfari, A.; Assempour, A., Determination of forming limit diagram using two modified finite element models, Mech Eng, 48, 4, 141-144 (2017)
[15] Hosseini, S.; Habibi, M.; Assempour, A., Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers, Modares Mech Eng, 18, 174-181 (2018)
[16] Fazaeli, A.; Habibi, M.; Ekrami, Aa., Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite – pearlite steel with the same chemical composition, Metall Eng, 19, 84-93 (2016)
[17] Alipour, M.; Torabi, MA; Sareban, M., Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels, Mech Based Des Struct Machines, 1-17 (2019) · doi:10.1080/15397734.2019.1633343
[18] Ghazanfari, A.; Soleimani, SS; Keshavarzzadeh, M., Prediction of FLD for sheet metal by considering through-thickness shear stresses, Mech Based Des Struct Machines, 1-18 (2019) · doi:10.1080/15397734.2019.1662310
[19] Torabi, MA; Shafieefar, M., An experimental investigation on the stability of foundation of composite vertical breakwaters, J Mar Sci Appl, 14, 175-182 (2015) · doi:10.1007/s11804-015-1309-7
[20] Torabi, M, Hamedi, A, Alamatian, E, et al.The effect of geometry parameters and flow characteristics on erosion and sedimentation in channels junction using finite volume method. arXiv preprint arXiv:1906.10102, 2019.
[21] Hosseini, D.; Torabi, M.; Moghadam, MA., Preference assessment of energy and momentum equations over 2D-SKM method in compound channels, J Water Resour Eng Manage, 6, 24-34 (2019)
[22] Marzbanrad, J.; Hoseinpour, A., Structural optimization of MacPherson control arm under fatigue loading, Tehnički vjesnik, 24, 917-924 (2017)
[23] Hossein, O, Amin, M, Adineh, M, et al.Investigating on hydrodynamic behavior of slotted breakwater walls under sea waves, 2019.
[24] Modaresahmadi, S, Hosseinpour, A, Williams, WB.Fatigue life prediction of a coaxial multi-stage magnetic gear. in 2019 IEEE Texas Power and Energy Conference (TPEC), 2019, pp. 1-6.
[25] Attariani, H.; Rezaei, SE; Momeni, K., Defect engineering, a path to make ultra-high strength low-dimensional nanostructures, Comput Mater Sci, 151, 307-316 (2018) · doi:10.1016/j.commatsci.2018.05.005
[26] Liu, N.; Rezaei, SE; Jensen, WA, Improved thermoelectric performance of eco-friendly β-FeSi2-SiGe nanocomposite via synergistic hierarchical structuring, phase percolation, and selective doping, Adv Funct Mater, 29, 38, 1903157 (2019) · doi:10.1002/adfm.201903157
[27] Attariani, H.; Rezaei, SE; Momeni, K., Mechanical property enhancement of one-dimensional nanostructures through defect-mediated strain engineering, Extreme Mech Lett, 27, 66-75 (2019) · doi:10.1016/j.eml.2019.01.004
[28] Yang, J.; Wu, H.; Kitipornchai, S., Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Compos Struct, 161, 111-118 (2017) · doi:10.1016/j.compstruct.2016.11.048
[29] Feng, C.; Kitipornchai, S.; Yang, J., Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), Compos Part B: Eng, 110, 132-140 (2017) · doi:10.1016/j.compositesb.2016.11.024
[30] Bisheh, H.; Alibeigloo, A.; Safarpour, M., Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method, Int J Appl Mech (2019) · doi:10.1142/S175882511950073X
[31] Safarpour, M.; Rahimi, A.; Alibeigloo, A., Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM, Mech Based Des Struct Machines, 1-29 (2019) · doi:10.1080/15397734.2019.1646137
[32] Shokrgozar, A.; Safarpour, H.; Habibi, M., Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator, Proc Inst Mech Eng, Part C: J Mech Eng Sci (2019) · doi:10.1177/0954406219883312
[33] Mohammadgholiha, M.; Shokrgozar, A.; Habibi, M., Buckling and frequency analysis of the nonlocal strain-stress gradient shell reinforced with graphene nanoplatelets, J Vib Control (2019)
[34] Safarpour, H.; Pourghader, J.; Habibi, M., Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator, J Vib Control, 25, 1543-1557 (2019) · doi:10.1177/1077546319828465
[35] Ebrahimi, F.; Hajilak, ZE; Habibi, M., Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions, Proc Inst Mech Eng, Part C: J Mech Eng Sci (2019) · doi:10.1177/0954406219832323
[36] Mohammadi, A.; Lashini, H.; Habibi, M., Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the Aid of GDQM, J Solid Mech, 11, 440-453 (2019)
[37] Habibi, M.; Hashemabadi, D.; Safarpour, H., Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator, The Eur Phys J Plus, 134, 307 (2019) · doi:10.1140/epjp/i2019-12742-7
[38] Ebrahimi, F.; Hashemabadi, D.; Habibi, M., Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell, Microsys Technol, 1-13 (2019) · doi:10.1007/s00542-019-04542-9
[39] Hashemi, HR; Alizadeh, Aa; Oyarhossein, MA, Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure, Waves Random Complex Media, 1-27 (2019) · Zbl 1493.74036 · doi:10.1080/17455030.2019.1662968
[40] Hosseini, M.; Bahaadini, R.; Makkiabadi, M., Application of the Green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes, Microfluid Nanofluid, 22, 6 (2018) · doi:10.1007/s10404-017-2022-4
[41] Ebrahimi, F.; Daman, M., Dynamic modeling of embedded curved nanobeams incorporating surface effects, Coupled Syst Mech, 5, 255-267 (2016) · doi:10.12989/csm.2016.5.3.255
[42] Ebrahimi, F.; Daman, M., Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment, Struct Eng Mech, 64, 121-133 (2017)
[43] Habibi, M.; Taghdir, A.; Safarpour, H., Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets, Compos Part B: Eng, 175, 107125 (2019) · doi:10.1016/j.compositesb.2019.107125
[44] Habibi, M.; Mohammadgholiha, M.; Safarpour, H., Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell, J Braz Soc Mech Sci Eng, 41, 221 (2019) · doi:10.1007/s40430-019-1715-x
[45] Pourjabari, A.; Hajilak, ZE; Mohammadi, A., Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures, Comput Math Appl, 77, 2608-2626 (2019) · Zbl 1442.74084 · doi:10.1016/j.camwa.2018.12.041
[46] Esmailpoor Hajilak, Z.; Pourghader, J.; Hashemabadi, D., Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory, Mech Based Des Struct Machines, 47, 5, 521-545 (2019) · doi:10.1080/15397734.2019.1566743
[47] Safarpour, H.; Ghanizadeh, SA; Habibi, M., Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory, The Eur Phys J Plus, 133, 532 (2018) · doi:10.1140/epjp/i2018-12385-2
[48] Ebrahimi, F.; Habibi, M.; Safarpour, H., On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell, Eng Comput, 35, 1375-1389 (2019) · doi:10.1007/s00366-018-0669-4
[49] Safarpour, H.; Hajilak, ZE; Habibi, M., A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation, Int J Mech Mater Des, 15, 569-583 (2019) · doi:10.1007/s10999-018-9431-8
[50] Ebrahimi, F.; Daman, M., Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams, Adv Nano Res, 5, 35-47 (2017) · doi:10.12989/anr.2017.5.1.035
[51] Ebrahimi, F.; Daman, M.; Fardshad, RE., Surface effects on vibration and buckling behavior of embedded nanoarches, Struct Eng Mech, 64, 1-10 (2017)
[52] Ebrahimi, F.; Daman, M.; Mahesh, V., Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory, Adv Nano Res, 7, 249-263 (2019)
[53] Ebrahimi, F.; Daman, M., Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams, J Eng, 2016 (2016) · doi:10.1155/2016/9848343
[54] Ebrahimi, F.; Daman, M., Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam, Smart Struct Syst, 20, 351-368 (2017)
[55] Ehyaei, J.; Daman, M., Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection, Adv Nano Res, 5, 179-192 (2017)
[56] Arda, M.; Aydogdu, M., Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity, Appl Phys A, 122, 219 (2016) · doi:10.1007/s00339-016-9751-1
[57] Islam, Z.; Jia, P.; Lim, C., Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory, Int J Appl Mech, 6, 1450011 (2014) · doi:10.1142/S1758825114500112
[58] Aydogdu, M., Longitudinal wave propagation in multiwalled carbon nanotubes, Compos Struct, 107, 578-584 (2014) · doi:10.1016/j.compstruct.2013.08.031
[59] Lim, C.; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J Mech Phys Solids, 78, 298-313 (2015) · Zbl 1349.74016 · doi:10.1016/j.jmps.2015.02.001
[60] Zeighampour, H.; Beni, YT; Dehkordi, MB., Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory, Thin-Walled Struct, 122, 378-386 (2018) · doi:10.1016/j.tws.2017.10.037
[61] Bisheh, HK; Wu, N., Wave propagation in piezoelectric cylindrical composite shells reinforced with angled and randomly oriented carbon nanotubes, Compos Part B: Eng, 160, 10-30 (2019) · doi:10.1016/j.compositesb.2018.10.001
[62] Bisheh, HK; Wu, N., Analysis of wave propagation characteristics in piezoelectric cylindrical composite shells reinforced with carbon nanotubes, Int J Mech Sci, 145, 200-220 (2018) · doi:10.1016/j.ijmecsci.2018.07.002
[63] Guo, X.; Wei, P.; Li, L., Effects of functionally graded interlayers on dispersion relations of shear horizontal waves in layered piezoelectric/piezomagnetic cylinders, Appl Math Model, 55, 569-582 (2018) · Zbl 1480.74067 · doi:10.1016/j.apm.2017.11.029
[64] Yahia, SA; Atmane, HA; Houari, MSA, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories, Struct Eng Mech, 53, 1143-1165 (2015) · doi:10.12989/sem.2015.53.6.1143
[65] Safarpour, H.; Barooti, M.; Ghadiri, M., Influence of rotation on vibration behavior of a functionally graded moderately thick cylindrical nanoshell considering initial hoop tension, J Solid Mech Vol, 11, 254-271 (2019)
[66] Ebrahimi, F.; Safarpour, H., Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects, Wind Struct, 27, 431-438 (2018)
[67] Mohammadi, K.; Barouti, MM; Safarpour, H., Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow, J Braz Soc Mech Sci Eng, 41, 93 (2019) · doi:10.1007/s40430-019-1591-4
[68] SafarPour, H.; Hosseini, M.; Ghadiri, M., Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: An exact solution, J Therm Stresses, 40, 1353-1367 (2017) · doi:10.1080/01495739.2017.1350827
[69] Safarpour, H.; Mohammadi, K.; Ghadiri, M., Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM, Int J Struct Stab Dyn, 18, 1850123 (2018) · Zbl 1535.74054 · doi:10.1142/S0219455418501237
[70] Safarpour, H.; Mohammadi, K.; Ghadiri, M., Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution, J Mech Behav Mater, 26, 9-24 (2017) · doi:10.1515/jmbm-2017-0010
[71] SafarPour, H.; Ghanbari, B.; Ghadiri, M., Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell, Appl Math Model, 65, 428-442 (2019) · Zbl 1481.74219 · doi:10.1016/j.apm.2018.08.028
[72] Shojaeefard, M.; Mahinzare, M.; Safarpour, H., Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition, Appl Math Model, 61, 255-279 (2018) · Zbl 1460.74042 · doi:10.1016/j.apm.2018.04.015
[73] Ghadiri, M.; Safarpour, H., Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory, Appl Phys A, 122, 833 (2016) · doi:10.1007/s00339-016-0365-4
[74] Ghadiri, M.; SafarPour, H., Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment, J Therm Stresses, 40, 55-71 (2017) · doi:10.1080/01495739.2016.1229145
[75] Ghadiri, M.; Shafiei, N.; Safarpour, H., Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity, Microsyst Technol, 23, 1045-1065 (2017) · doi:10.1007/s00542-016-2822-6
[76] SafarPour, H.; Ghadiri, M., Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid, Microfluid Nanofluid, 21, 22 (2017) · doi:10.1007/s10404-017-1858-y
[77] Barooti, MM; Safarpour, H.; Ghadiri, M., Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations, The Eur Phys J Plus, 132, 6 (2017) · doi:10.1140/epjp/i2017-11275-5
[78] Ansari, MI; Kumar, A., Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone, Mech Based Des Struct Machines, 47, 67-86 (2019) · doi:10.1080/15397734.2018.1519635
[79] Ansari, M.; Kumar, A.; Fic, S., Flexural and free vibration analysis of CNT-reinforced functionally graded plate, Materials, 11, 2387 (2018) · doi:10.3390/ma11122387
[80] Ansari, MI; Kumar, A.; Barnat-Hunek, D., Effect of mass variation on vibration of a functionally graded material plate, AIAA J, 56, 4626-4631 (2018) · doi:10.2514/1.J057095
[81] Ansari, MI; Kumar, A.; Barnat-Hunek, D., Dynamic analysis of FGM rhombic plates with a variation in the mass, Materiali in tehnologije, 52, 731-736 (2018) · doi:10.17222/mit.2018.071
[82] Ansari, M.; Kumar, A.; Barnat-Hunek, D., Static and dynamic response of FG-CNT-reinforced rhombic laminates, Appl Sci, 8, 834 (2018) · doi:10.3390/app8050834
[83] Ansari, MI; Kumar, A., Flexural analysis of functionally graded CNT-reinforced doubly curved singly ruled composite truncated cone, J Aerosp Eng, 32, 04018154 (2018) · doi:10.1061/(ASCE)AS.1943-5525.0000988
[84] Ansari, MI; Kumar, A.; Chakrabarti, A., Static analysis of doubly curved singly ruled truncated FGM cone, Compos Struct, 184, 523-535 (2018) · doi:10.1016/j.compstruct.2017.10.028
[85] Ghayesh, MH; Farokhi, H.; Amabili, M., Nonlinear dynamics of a microscale beam based on the modified couple stress theory, Compos Part B: Eng, 50, 318-324 (2013) · doi:10.1016/j.compositesb.2013.02.021
[86] Farokhi, H.; Ghayesh, MH; Amabili, M., Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory, Int J Eng Sci, 68, 11-23 (2013) · Zbl 1423.74473 · doi:10.1016/j.ijengsci.2013.03.001
[87] Farokhi, H.; Ghayesh, MH., Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory, Int J Mech Sci, 90, 133-144 (2015) · doi:10.1016/j.ijmecsci.2014.11.002
[88] Ghayesh, MH; Farokhi, H.; Alici, G., Size-dependent performance of microgyroscopes, Int J Eng Sci, 100, 99-111 (2016) · Zbl 1423.70010 · doi:10.1016/j.ijengsci.2015.11.003
[89] Ghayesh, MH., Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity, Int J Mech Sci, 140, 339-350 (2018) · doi:10.1016/j.ijmecsci.2018.02.037
[90] Ghayesh, MH; Farokhi, H., Chaotic motion of a parametrically excited microbeam, Int J Eng Sci, 96, 34-45 (2015) · Zbl 1423.74480 · doi:10.1016/j.ijengsci.2015.07.004
[91] Gholipour, A.; Farokhi, H.; Ghayesh, MH., In-plane and out-of-plane nonlinear size-dependent dynamics of microplates, Nonlinear Dyn, 79, 1771-1785 (2015) · doi:10.1007/s11071-014-1773-7
[92] Ghayesh, MH; Amabili, M.; Farokhi, H., Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams, Int J Eng Sci, 71, 1-14 (2013) · Zbl 1423.74479 · doi:10.1016/j.ijengsci.2013.04.003
[93] Ghayesh, MH; Farokhi, H.; Amabili, M., In-plane and out-of-plane motion characteristics of microbeams with modal interactions, Compos Part B: Eng, 60, 423-439 (2014) · doi:10.1016/j.compositesb.2013.12.074
[94] Ghayesh, MH; Farokhi, H., Nonlinear dynamics of microplates, Int J Eng Sci, 86, 60-73 (2015) · Zbl 1423.74543 · doi:10.1016/j.ijengsci.2014.10.004
[95] Farokhi, H.; Ghayesh, MH., Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams, Int J Eng Sci, 91, 12-33 (2015) · Zbl 1423.74694 · doi:10.1016/j.ijengsci.2015.02.005
[96] Sahmani, S.; Aghdam, MM; Rabczuk, T., Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs, Compos Struct, 198, 51-62 (2018) · doi:10.1016/j.compstruct.2018.05.031
[97] Ebrahimi, F.; Barati, MR., Vibration analysis of nonlocal beams made of functionally graded material in thermal environment, The Eur Phys J Plus, 131, 279 (2016) · doi:10.1140/epjp/i2016-16279-y
[98] Li, L.; Li, X.; Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, Int J Eng Sci, 102, 77-92 (2016) · Zbl 1423.74399 · doi:10.1016/j.ijengsci.2016.02.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.