×

Size-dependent performance of microgyroscopes. (English) Zbl 1423.70010

Summary: The size-dependent dynamical performance of a microgyroscope is investigated via use of the modified couple stress theory. The size-dependent potential energy and the kinetic energy of the system are constructed as functions of both transverse and lateral motions as well as base-rotation; the works of DC and AC voltages applied by the drive and sense electrodes are constructed in terms of the system parameters. The work and energy terms are balanced via use of Hamilton’s principle yielding the continuous expressions for the transverse and lateral motions of the microgyroscope. By means of a weighted-residual method, a reduction procedure is applied leading to a reduced-order model. This model is solved via use of a continuation technique. The relation between the base-rotation and gyroscopic couplings is obtained and the calibration curve of the microgyroscope is plotted. The size-dependent frequency-response curves for the sense and drive directions are obtained; the gyroscopic effect gives rise to the displacement in the sense direction. The effect of different system parameter including the length-scale parameter on the dynamical performance of the microgyroscope is highlighted.

MSC:

70E05 Motion of the gyroscope
Full Text: DOI

References:

[1] Akgöz, B.; Civalek, Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49, 1268-1280, (2011) · Zbl 1423.74338
[2] Antonello, R.; Oboe, R.; Prandi, L.; Biganzoli, F., Automatic mode matching in MEMS vibrating gyroscopes using extremum-seeking control, IEEE Transactions on Industrial Electronics, 56, 3880-3891, (2009)
[3] Baghani, M., Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory, International Journal of Engineering Science, 54, 99-105, (2012)
[4] Bhadbhade, V.; Jalili, N.; Nima Mahmoodi, S., A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope, Journal of Sound and Vibration, 311, 1305-1324, (2008)
[5] Dai, H. L.; Wang, Y. K.; Wang, L., Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory, International Journal of Engineering Science, 94, 103-112, (2015) · Zbl 1423.74463
[6] Dehrouyeh-Semnani, A. M., A discussion on different non-classical constitutive models of microbeam, International Journal of Engineering Science, 85, 66-73, (2014)
[7] Dehrouyeh-Semnani, A. M., The influence of size effect on flapwise vibration of rotating microbeams, International Journal of Engineering Science, 94, 150-163, (2015) · Zbl 1423.74465
[8] Farokhi, H.; Ghayesh, M. H., Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams, International Journal of Engineering Science, 91, 12-33, (2015) · Zbl 1423.74694
[9] Farokhi, H.; Ghayesh, M. H.; Amabili, M., Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory, International Journal of Engineering Science, 68, 11-23, (2013) · Zbl 1423.74473
[10] Feng, Z. C.; Gore, K., Dynamic characteristics of vibratory gyroscopes, IEEE Sensors Journal, 4, 80-84, (2004)
[11] Ghayesh, M.; Farokhi, H.; Amabili, M., Coupled nonlinear size-dependent behaviour of microbeams, Applied Physics A, 112, 329-338, (2013) · Zbl 1423.74479
[12] Ghayesh, M. H.; Amabili, M.; Farokhi, H., Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams, International Journal of Engineering Science, 71, 1-14, (2013) · Zbl 1423.74479
[13] Ghayesh, M. H.; Farokhi, H., Nonlinear dynamics of microplates, International Journal of Engineering Science, 86, 60-73, (2015) · Zbl 1423.74543
[14] Ghayesh, M. H.; Farokhi, H., Chaotic motion of a parametrically excited microbeam, International Journal of Engineering Science, 96, 34-45, (2015) · Zbl 1423.74480
[15] Ghayesh, M. H.; Farokhi, H.; Alici, G., Subcritical parametric dynamics of microbeams, International Journal of Engineering Science, 95, 36-48, (2015) · Zbl 1423.74482
[16] Ghayesh, M. H.; Farokhi, H.; Amabili, M., Nonlinear behaviour of electrically actuated MEMS resonators, International Journal of Engineering Science, 71, 137-155, (2013)
[17] Ghayesh, M. H.; Farokhi, H.; Amabili, M., In-plane and out-of-plane motion characteristics of microbeams with modal interactions, Composites Part B: Engineering, 60, 423-439, (2014)
[18] Ghommem, M.; Nayfeh, A. H.; Choura, S.; Najar, F.; Abdel-Rahman, E. M., Modeling and performance study of a beam microgyroscope, Journal of Sound and Vibration, 329, 4970-4979, (2010)
[19] Jeong Sam, H.; Byung Man, K., Robust optimal design of a vibratory microgyroscope considering fabrication errors, Journal of Micromechanics and Microengineering, 11, 662, (2001)
[20] Kahrobaiyan, M. H.; Rahaeifard, M.; Tajalli, S. A.; Ahmadian, M. T., A strain gradient functionally graded Euler-Bernoulli beam formulation, International Journal of Engineering Science, 52, 65-76, (2012) · Zbl 1423.74488
[21] Karparvarfard, S. M.H.; Asghari, M.; Vatankhah, R., A geometrically nonlinear beam model based on the second strain gradient theory, International Journal of Engineering Science, 91, 63-75, (2015) · Zbl 1423.74489
[22] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams, International Journal of Engineering Science, 46, 427-437, (2008) · Zbl 1213.74189
[23] Korhan, S.; Emre, S.; Said Emre, A.; Tayfun, A., A wide-bandwidth and high-sensitivity robust microgyroscope, Journal of Micromechanics and Microengineering, 19, (2009)
[24] Lajimi, S. A.M.; Heppler, G. R.; Abdel-Rahman, E. M., Primary resonance of a beam-rigid body microgyroscope, International Journal of Non Linear Mechanics, 77, 364-375, (2015)
[25] Mohammadabadi, M.; Daneshmehr, A. R.; Homayounfard, M., Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory, International Journal of Engineering Science, 92, 47-62, (2015) · Zbl 1423.74348
[26] Oh, Y. S.; Lee, B. L.; Baek, S. S.; Kim, H. S.; Kim, J. G.; Kang, S. J.; Song, C. M., A tunable vibratory microgyroscope, Sensors and Actuators A, 64, 51-56, (1998)
[27] Rahaeifard, M., Size-dependent torsion of functionally graded bars, Composites Part B: Engineering, 82, 205-211, (2015)
[28] Rokni, H.; Seethaler, R. J.; Milani, A. S.; Hosseini-Hashemi, S.; Li, X.-F., Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation, Sensors and Actuators A, 190, 32-43, (2013)
[29] Şimşek, M.; Reddy, J. N., Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, International Journal of Engineering Science, 64, 37-53, (2013) · Zbl 1423.74517
[30] Tang, C.; Alici, G., Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. experimental determination of length-scale factors, Journal of Physics D: Applied Physics, 44, (2011)
[31] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids Structures, 39, 2731-2743, (2002) · Zbl 1037.74006
[32] Yoon Shik, H.; Jong Hyun, L.; Soo Hyun, K., A laterally driven symmetric micro-resonator for gyroscopic applications, Journal of Micromechanics and Microengineering, 10, 452, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.