×

Joint modeling of multistate and nonparametric multivariate longitudinal data. (English) Zbl 07923938

Summary: It is oftentimes the case in studies of disease progression that subjects can move into one of several disease states of interest. Multistate models are an indispensable tool to analyze data from such studies. The Environmental Determinants of Diabetes in the Young (TEDDY) is an observational study of at-risk children from birth to onset of type-1 diabetes (T1D) up through the age of 15. A joint model for simultaneous inference of multistate and multivariate nonparametric longitudinal data is proposed to analyze data and answer the research questions brought up in the study. The proposed method allows us to make statistical inferences, test hypotheses, and make predictions about future state occupation in the TEDDY study. The performance of the proposed method is evaluated by simulation studies. The proposed method is applied to the motivating example to demonstrate the capabilities of the method.

MSC:

62Pxx Applications of statistics

References:

[1] ALAFCHI, B., MAHJUB, H., TAPAK, L., ROSHANAEI, G. and AMIRZARGAR, M. A. (2021). Two-stage joint model for multivariate longitudinal and multistate processes, with application to renal transplantation data. J. Probab. Stat. Art. ID 6641602. Digital Object Identifier: 10.1155/2021/6641602 Google Scholar: Lookup Link MathSciNet: MR4244007 · Zbl 1468.62371 · doi:10.1155/2021/6641602
[2] ALBERT, P. S. (2019). Shared random parameter models: A legacy of the biostatistics program at the national heart, lung and blood institute. Stat. Med. 38 501-511. Digital Object Identifier: 10.1002/sim.8011 Google Scholar: Lookup Link MathSciNet: MR3902594 · doi:10.1002/sim.8011
[3] ATKINSON, M. A., EISENBARTH, G. S. and MICHELS, A. W. (2014). Type 1 diabetes. Lancet 383 69-82.
[4] BOOTH, J. G. and HOBERT, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo em algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 265-285. · Zbl 0917.62058
[5] BROWN, E. R., IBRAHIM, J. G. and DEGRUTTOLA, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61 64-73. Digital Object Identifier: 10.1111/j.0006-341X.2005.030929.x Google Scholar: Lookup Link MathSciNet: MR2129202 · Zbl 1077.62102 · doi:10.1111/j.0006-341X.2005.030929.x
[6] BRUMBACK, B. A. and RICE, J. A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. J. Amer. Statist. Assoc. 93 961-994. With comments and a rejoinder by the authors. Digital Object Identifier: 10.2307/2669837 Google Scholar: Lookup Link MathSciNet: MR1649194 · Zbl 1064.62515 · doi:10.2307/2669837
[7] CHI, Y.-Y. and IBRAHIM, J. G. (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62 432-445. Digital Object Identifier: 10.1111/j.1541-0420.2005.00448.x Google Scholar: Lookup Link MathSciNet: MR2227491 · Zbl 1097.62122 · doi:10.1111/j.1541-0420.2005.00448.x
[8] DE BOOR, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences 27. Springer, New York-Berlin. MathSciNet: MR0507062 MathSciNet: MR507062 · Zbl 0406.41003
[9] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. With discussion. MathSciNet: MR0501537 · Zbl 0364.62022
[10] FERRER, L., RONDEAU, V., DIGNAM, J., PICKLES, T., JACQMIN-GADDA, H. and PROUST-LIMA, C. (2016). Joint modelling of longitudinal and multi-state processes: Application to clinical progressions in prostate cancer. Stat. Med. 35 3933-3948. Digital Object Identifier: 10.1002/sim.6972 Google Scholar: Lookup Link MathSciNet: MR3545618 · doi:10.1002/sim.6972
[11] GRUTTOLA, V. D. and TU, X. M. (1994). Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50 1003-1014. · Zbl 0825.62792
[12] HSIEH, F., TSENG, Y.-K. and WANG, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics 62 1037-1043. Digital Object Identifier: 10.1111/j.1541-0420.2006.00570.x Google Scholar: Lookup Link MathSciNet: MR2297674 · Zbl 1116.62105 · doi:10.1111/j.1541-0420.2006.00570.x
[13] HUANG, H., LI, Y. and GUAN, Y. (2014). Joint modeling and clustering paired generalized longitudinal trajectories with application to cocaine abuse treatment data. J. Amer. Statist. Assoc. 109 1412-1424. Digital Object Identifier: 10.1080/01621459.2014.957286 Google Scholar: Lookup Link MathSciNet: MR3293600 · doi:10.1080/01621459.2014.957286
[14] HUANG, X., LI, G. and ELASHOFF, R. M. (2010). A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Stat. Interface 3 185-195. Digital Object Identifier: 10.4310/SII.2010.v3.n2.a6 Google Scholar: Lookup Link MathSciNet: MR2659510 · Zbl 1245.62124 · doi:10.4310/SII.2010.v3.n2.a6
[15] JOY, C., BOYLE, P. P. and TAN, K. S. (1996). Quasi-Monte Carlo methods in numerical finance. Manage. Sci. 42 926-938. · Zbl 0880.90006
[16] KRISCHER, J. P., LYNCH, K. F., SCHATZ, D. A., ILONEN, J., LERNMARK, Å., HAGOPIAN, W. A., REWERS, M. J., SHE, J.-X., SIMELL, O. G. et al. (2015). The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: The TEDDY study. Diabetologia 58 980-987.
[17] LI, G., LESPERANCE, M. and WU, Z. (2022). Joint modeling of multivariate survival data with an application to retirement. Sociol. Methods Res. 51 1920-1946. Digital Object Identifier: 10.1177/0049124120914928 Google Scholar: Lookup Link MathSciNet: MR4516875 · doi:10.1177/0049124120914928
[18] LI, N., ELASHOFF, R. M., LI, G. and TSENG, C.-H. (2012). Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Stat. Med. 31 1707-1721. Digital Object Identifier: 10.1002/sim.4507 Google Scholar: Lookup Link MathSciNet: MR2947519 · doi:10.1002/sim.4507
[19] Liu, L., Huang, X. and O’Quigley, J. (2008). Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data. Biometrics 64 950-958. Digital Object Identifier: 10.1111/j.1541-0420.2007.00954.x Google Scholar: Lookup Link MathSciNet: MR2526647 · Zbl 1145.62388 · doi:10.1111/j.1541-0420.2007.00954.x
[20] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449-485. With comments and a rejoinder by the authors. Digital Object Identifier: 10.2307/2669386 Google Scholar: Lookup Link MathSciNet: MR1803168 · Zbl 0995.62033 · doi:10.2307/2669386
[21] NIEDERREITER, H. (1978). Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc. 84 957-1041. Digital Object Identifier: 10.1090/S0002-9904-1978-14532-7 Google Scholar: Lookup Link MathSciNet: MR0508447 · Zbl 0404.65003 · doi:10.1090/S0002-9904-1978-14532-7
[22] PAK, D., LI, C., TODEM, D. and SOHN, W. (2017). A multistate model for correlated interval-censored life history data in caries research. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 413-423. Digital Object Identifier: 10.1111/rssc.12186 Google Scholar: Lookup Link MathSciNet: MR3611694 · doi:10.1111/rssc.12186
[23] PERPEROGLOU, A., SAUERBREI, W., ABRAHAMOWICZ, M. and SCHMID, M. (2019). A review of spline function procedures in R. BMC Med. Res. Methodol. 19 1-16.
[24] RIZOPOULOS, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67 819-829. Digital Object Identifier: 10.1111/j.1541-0420.2010.01546.x Google Scholar: Lookup Link MathSciNet: MR2829256 · Zbl 1226.62124 · doi:10.1111/j.1541-0420.2010.01546.x
[25] RIZOPOULOS, D. and GHOSH, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat. Med. 30 1366-1380. Digital Object Identifier: 10.1002/sim.4205 Google Scholar: Lookup Link MathSciNet: MR2828959 · doi:10.1002/sim.4205
[26] SALAMI, F., TAMURA, R., YOU, L., LERNMARK, Å., LARSSON, H. E., LUNDGREN, M., KRISCHER, J., ZIEGLER, A.-G., TOPPARI, J. et al. (2022). HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children. Pediatric Diabetes 23 1586-1593.
[27] SAYERS, A., HERON, J., SMITH, A. D. A. C., MACDONALD-WALLIS, C., GILTHORPE, M. S., STEELE, F. and TILLING, K. (2017). Joint modelling compared with two stage methods for analysing longitudinal data and prospective outcomes: A simulation study of childhood growth and BP. Stat. Methods Med. Res. 26 437-452. Digital Object Identifier: 10.1177/0962280214548822 Google Scholar: Lookup Link MathSciNet: MR3592734 · doi:10.1177/0962280214548822
[28] SCHLUCHTER, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Stat. Med. 11 1861-1870. Digital Object Identifier: 10.1002/sim.4780111408 Google Scholar: Lookup Link · doi:10.1002/sim.4780111408
[29] SLOAN, I. H. and WOŹNIAKOWSKI, H. (1998). When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14 1-33. Digital Object Identifier: 10.1006/jcom.1997.0463 Google Scholar: Lookup Link MathSciNet: MR1617765 · Zbl 1032.65011 · doi:10.1006/jcom.1997.0463
[30] SOBOL, I. M. (1976). Uniformly distributed sequences with an additional property of uniformity. USSR Comput. Math. Math. Phys. 16 236-242. · Zbl 0391.10033
[31] TSIATIS, A. A. and DAVIDIAN, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statist. Sinica 14 809-834. MathSciNet: MR2087974 · Zbl 1073.62087
[32] WAND, M. P. (2000). A comparison of regression spline smoothing procedures. Comput. Statist. 15 443-462. Digital Object Identifier: 10.1007/s001800000047 Google Scholar: Lookup Link MathSciNet: MR1818029 · Zbl 1037.62038 · doi:10.1007/s001800000047
[33] WILLIAMSON, P. R., KOLAMUNNAGE-DONA, R., PHILIPSON, P. and MARSON, A. G. (2008). Joint modelling of longitudinal and competing risks data. Stat. Med. 27 6426-6438. Digital Object Identifier: 10.1002/sim.3451 Google Scholar: Lookup Link MathSciNet: MR2655125 · doi:10.1002/sim.3451
[34] WULFSOHN, M. S. and TSIATIS, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53 330-339. Digital Object Identifier: 10.2307/2533118 Google Scholar: Lookup Link MathSciNet: MR1450186 · Zbl 0874.62140 · doi:10.2307/2533118
[35] XU, J. and ZEGER, S. L. (2001). The evaluation of multiple surrogate endpoints. Biometrics 57 81-87. Digital Object Identifier: 10.1111/j.0006-341X.2001.00081.x Google Scholar: Lookup Link MathSciNet: MR1833292 · Zbl 1209.62340 · doi:10.1111/j.0006-341X.2001.00081.x
[36] YANG, L., YU, M. and GAO, S. (2016). Joint models for multiple longitudinal processes and time-to-event outcome. J. Stat. Comput. Simul. 86 3682-3700. Digital Object Identifier: 10.1080/00949655.2016.1181760 Google Scholar: Lookup Link MathSciNet: MR3547952 · Zbl 07184823 · doi:10.1080/00949655.2016.1181760
[37] YAO, F. (2007). Functional principal component analysis for longitudinal and survival data. Statist. Sinica 17 965-983. MathSciNet: MR2408647 · Zbl 1133.62042
[38] YE, J., LI, Y. and GUAN, Y. (2015). Joint modeling of longitudinal drug using pattern and time to first relapse in cocaine dependence treatment data. Ann. Appl. Stat. 9 1621-1642. Digital Object Identifier: 10.1214/15-AOAS852 Google Scholar: Lookup Link MathSciNet: MR3418738 · Zbl 1400.62298 · doi:10.1214/15-AOAS852
[39] YIU, S. and TOM, B. (2017). A joint modelling approach for multistate processes subject to resolution and under intermittent observations. Stat. Med. 36 496-508. Digital Object Identifier: 10.1002/sim.7149 Google Scholar: Lookup Link MathSciNet: MR3592175 · doi:10.1002/sim.7149
[40] YOU, L. and QIU, P. (2021). Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach. Stat. Med. 40 6689-6706. Digital Object Identifier: 10.1002/sim.9206 Google Scholar: Lookup Link MathSciNet: MR4352762 · doi:10.1002/sim.9206
[41] YOU, L., SALAMI, F., TÖRN, C., LERNMARK, Å. and TAMURA, R. (2024). Supplement to “Joint modeling of multistate and nonparametric multivariate longitudinal data.” https://doi.org/10.1214/24-AOAS1889SUPPA, https://doi.org/10.1214/24-AOAS1889SUPPB
[42] YU, L., ZHAO, Z. and STECK, A. K. (2017). T1D autoantibodies: Room for improvement? Current Opinion in Endocrinology, Diabetes, and Obesity 24 285.
[43] YUE, X. and AL KONTAR, R. (2021). Joint models for event prediction from time series and survival data. Technometrics 63 477-486. Digital Object Identifier: 10.1080/00401706.2020.1832582 Google Scholar: Lookup Link MathSciNet: MR4331448 · doi:10.1080/00401706.2020.1832582
[44] ZENG, D. and LIN, D. Y. (2021). Maximum likelihood estimation for semiparametric regression models with panel count data. Biometrika 108 947-963. Digital Object Identifier: 10.1093/biomet/asaa091 Google Scholar: Lookup Link MathSciNet: MR4341361 · Zbl 07459742 · doi:10.1093/biomet/asaa091
[45] ZHANG, H., KELVIN, E. A., CARPIO, A. and ALLEN HAUSER, W. (2020). A multistate joint model for interval-censored event-history data subject to within-unit clustering and informative missingness, with application to neurocysticercosis research. Stat. Med. 39 3195-3206. Digital Object Identifier: 10.1002/sim.8663 Google Scholar: Lookup Link MathSciNet: MR4151928 · doi:10.1002/sim.8663
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.