×

Two-stage joint model for multivariate longitudinal and multistate processes, with application to renal transplantation data. (English) Zbl 1468.62371

Summary: In longitudinal studies, clinicians usually collect longitudinal biomarkers’ measurements over time until an event such as recovery, disease relapse, or death occurs. Joint modeling approaches are increasingly used to study the association between one longitudinal and one survival outcome. However, in practice, a patient may experience multiple disease progression events successively. So instead of modeling of a single event, progression of the disease as a multistate process should be modeled. On the other hand, in such studies, multivariate longitudinal outcomes may be collected and their association with the survival process is of interest. In the present study, we applied a joint model of various longitudinal biomarkers and transitions between different health statuses in patients who underwent renal transplantation. The full joint likelihood approaches are faced with the complexities in computation of the likelihood. So, here, we have proposed two-stage modeling of multivariate longitudinal outcomes and multistate conditions to avoid these complexities. The proposed model showed reliable results compared to the joint model in case of joint modeling of univariate longitudinal biomarker and the multistate process.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62H12 Estimation in multivariate analysis
62N05 Reliability and life testing

Software:

mlmmm

References:

[1] Rizopoulos, D., Joint Models for Longitudinal and Time-To-Event Data: With Applications in R (2012), Boca Raton, FL, USA: Chapman and Hall/CRC, Boca Raton, FL, USA · Zbl 1284.62032
[2] Wulfsohn, M. S.; Tsiatis, A. A., A joint model for survival and longitudinal data measured with error, Biometrics, 53, 330-339 (1997) · Zbl 0874.62140
[3] Zhang, D.; Chen, M.-H.; Ibrahim, J. G.; Boye, M. E.; Shen, W., Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials, Journal of Computational and Graphical Statistics, 26, 1, 121-133 (2017) · doi:10.1080/10618600.2015.1117472
[4] Ferrer, L.; Rondeau, V.; Dignam, J.; Pickles, T.; Jacqmin-Gadda, H.; Proust-Lima, C., Joint modelling of longitudinal and multistate processes: application to clinical progressions in prostate cancer, Statistics in Medicine, 35, 22, 3933-3948 (2016) · doi:10.1002/sim.6972
[5] Chi, Y.-Y.; Ibrahim, J. G., Joint models for multivariate longitudinal and multivariate survival data, Biometrics, 62, 2, 432-445 (2006) · Zbl 1097.62122 · doi:10.1111/j.1541-0420.2005.00448.x
[6] Andrinopoulou, E.-R.; Rizopoulos, D.; Takkenberg, J. J. M.; Lesaffre, E., Joint modeling of two longitudinal outcomes and competing risk data, Statistics in Medicine, 33, 18, 3167-3178 (2014) · doi:10.1002/sim.6158
[7] Dantan, E.; Joly, P.; Dartigues, J.-F.; Jacqmin-Gadda, H., Joint model with latent state for longitudinal and multistate data, Biostatistics, 12, 4, 723-736 (2011) · Zbl 1314.62237 · doi:10.1093/biostatistics/kxr003
[8] Guler, I.; Faes, C.; Cadarso-Suárez, C.; Teixeira, L.; Rodrigues, A.; Mendonça, D., Two-stage model for multivariate longitudinal and survival data with application to nephrology research, Biometrical Journal, 59, 6, 1204-1220 (2017) · Zbl 1379.62068 · doi:10.1002/bimj.201600244
[9] Huong, P. T. T.; Nur, D.; Pham, H.; Branford, A., A modified two-stage approach for joint modelling of longitudinal and time-to-event data, Journal of Statistical Computation and Simulation, 88, 17, 3379-3398 (2018) · Zbl 07192722 · doi:10.1080/00949655.2018.1518449
[10] Hedeker, D.; Gibbons, R. D., Longitudinal Data Analysis, 451 (2006), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 1136.62075
[11] Cox, D. R., Regression models and life-tables, Journal of the Royal Statistical Society: Series B (Methodological), 34, 2, 187-202 (1972) · doi:10.1111/j.2517-6161.1972.tb00899.x
[12] Ye, W.; Lin, X.; Taylor, J. M. G., Semiparametric modeling of longitudinal measurements and time-to-event data-a two-stage regression calibration approach, Biometrics, 64, 4, 1238-1246 (2008) · Zbl 1151.62093 · doi:10.1111/j.1541-0420.2007.00983.x
[13] Pawitan, Y.; Self, S., Modeling disease marker processes in AIDS, Journal of the American Statistical Association, 88, 423, 719-726 (1993) · Zbl 0800.62728 · doi:10.1080/01621459.1993.10476332
[14] Tsiatis, A. A.; Degruttola, V.; Wulfsohn, M. S., Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS, Journal of the American Statistical Association, 90, 429, 27-37 (1995) · Zbl 0818.62102 · doi:10.1080/01621459.1995.10476485
[15] Guler, I.; Kneib, F. S. T.; Fahrenholz, J., Comparing the predictive performance of different regression models for longitudinal and time-to-event data, Workshop on Statistical Modelling, 111-116 (2014), Göttingen, Germany
[16] Wu, L.; Liu, W.; Hu, X. J., Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors, Biometrics, 66, 2, 327-335 (2010) · Zbl 1192.62246 · doi:10.1111/j.1541-0420.2009.01308.x
[17] Yücel, R. M., R mlmmm package: fitting multivariate linear mixed effects models with missing values, Turkiye Klinikleri Journal of Biostatistics, 7, 1 (2015) · doi:10.5336/biostatic.2014-42149
[18] Lagakos, S. W.; Sommer, C. J.; Zelen, M., Semi-Markov models for partially censored data, Biometrika, 65, 2, 311-317 (1978) · Zbl 0398.62032 · doi:10.1093/biomet/65.2.311
[19] Datta, S.; Satten, G. A., Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models, Statistics & Probability Letters, 55, 4, 403-411 (2001) · Zbl 0998.62072 · doi:10.1016/s0167-7152(01)00155-9
[20] Ha, I. D.; Park, T.; Lee, Y., Joint modelling of repeated measures and survival time data, Biometrical Journal, 45, 6, 647-658 (2003) · Zbl 1441.62328 · doi:10.1002/bimj.200390039
[21] Kasiske, B. L., Creatinine excretion after renal transplantation, Transplantation, 48, 3, 424-427 (1989) · doi:10.1097/00007890-198909000-00014
[22] Liu, K. D.; Himmelfarb, J.; Paganini, E., Timing of initiation of dialysis in critically ill patients with acute kidney injury, Clinical Journal of the American Society of Nephrology, 1, 5, 915-919 (2006) · doi:10.2215/cjn.01430406
[23] Lyman, J. L., Blood urea nitrogen and creatinine, Emergency Medicine Clinics of North America, 4, 2, 223-233 (1986) · doi:10.1016/s0733-8627(20)30997-4
[24] Ramanathan, V.; Mandayam, S., Post-transplant anemia, Management of Anemia, 185-198 (2018), New York, NY, USA: Springer, New York, NY, USA
[25] Schechter, A., Post renal transplant anemia: severity, causes and their association with graft and patient survival, BMC Nephrology, 20, 1, 51 (2019) · doi:10.1186/s12882-019-1244-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.