×

Homotopy properties of \(\text{map}(\Sigma^n \mathbb{C}P^2,S^m)\). (English) Zbl 1471.55017

Given spaces \(X\) and \(Y\), let \(\operatorname{map}(X,Y)\) and \(\operatorname{map}_\ast(X,Y)\) be the unbased and based mapping spaces from \(X\) to \(Y\), equipped with compact-open topology, respectively.
H. Kachi et al. [Math. J. Okayama Univ. 43, 105–121 (2001; Zbl 1039.55010)] described cohomotopy groups \(\pi^{m+n}(\Sigma^n\mathbb{C}P^2)\) in the range of \(-5\le m\le 1\) of the \(n\)-suspended complex plane \(\Sigma^n\mathbb{C}P^2\).
The author computes \(\pi^{m+n}(\Sigma^n\mathbb{C}P^2)\) for \(m=6,7\). Using these results, path components \(\operatorname{map}(\Sigma^n\mathbb{C}P^2, \mathbb{S}^m; f)\) of the mapping space \(\operatorname{map}(\Sigma^n\mathbb{C}P^2, \mathbb{S}^m)\) (for \(f\in \operatorname{map}(\Sigma^n\mathbb{C}P^2,\mathbb{S}^m)\)) are classified up to homotopy equivalence and the generalized Gottlieb groups \(G_n(\mathbb{C}P^2,\mathbb{S}^m)\) for some low dimensions are determined. Finally, some homotopy groups of the path components \(\operatorname{map}(\Sigma^n\mathbb{C}P^2, \mathbb{S}^m; f)\) for all generators \([f]\) of \(\pi^m(\Sigma^n\mathbb{C}P^2)\) are computed.

MSC:

55Q55 Cohomotopy groups
55P15 Classification of homotopy type

Citations:

Zbl 1039.55010

References:

[1] M. Arkowitz,The generalized Whitehead product, Pacific J. Math.12(1962), 7-23. http://projecteuclid.org/euclid.pjm/1103036701 · Zbl 0118.18404
[2] J.-B. Gatsinzi,Rational Gottlieb group of function spaces of maps into an even sphere, Int. J. Algebra6(2012), no. 9-12, 427-432. · Zbl 1252.55007
[3] M. Golasi´nski and J. Mukai,Gottlieb groups of spheres, Topology47(2008), no. 6, 399-430.https://doi.org/10.1016/j.top.2007.11.001 · Zbl 1172.55004
[4] D. H. Gottlieb,Evaluation subgroups of homotopy groups, Amer. J. Math.91(1969), 729-756.https://doi.org/10.2307/2373349 · Zbl 0185.27102
[5] B. Gray,Homotopy Theory, Academic Press, New York, 1975.
[6] V. L. Hansen,Equivalence of evaluation fibrations, Invent. Math.23(1974), 163-171. https://doi.org/10.1007/BF01405168 · Zbl 0281.55002
[7] D. Harris,Every space is a path component space, Pacific J. Math.91(1980), no. 1, 95-104.http://projecteuclid.org/euclid.pjm/1102778858 · Zbl 0468.54005
[8] H. Kachi, J. Mukai, T. Nozaki, Y. Sumita, and D. Tamaki,Some cohomotopy groups of suspended projective planes, Math. J. Okayama Univ.43(2001), 105-121. · Zbl 1039.55010
[9] P. J. Kahn,Some function spaces of CW type, Proc. Amer. Math. Soc.90(1984), no. 4, 599-607.https://doi.org/10.2307/2045037 · Zbl 0511.57013
[10] G. Lupton and S. B. Smith,Gottlieb groups of function spaces, Math. Proc. Cambridge Philos. Soc.159(2015), no. 1, 61-77.https://doi.org/10.1017/S0305004115000201 · Zbl 1371.55010
[11] ,Criteria for components of a function space to be homotopy equivalent, Math. Proc. Cambridge Philos. Soc.145(2008), no. 1, 95-106.https://doi.org/10.1017/ S0305004108001175 · Zbl 1151.55006
[12] G. E. Lang, Jr.,The evaluation map andEHPsequences, Pacific J. Math.44(1973), 201-210.http://projecteuclid.org/euclid.pjm/1102948664 · Zbl 0217.20003
[13] K. Maruyama and H. ¯Oshima,Homotopy groups of the spaces of self-maps of Lie groups, J. Math. Soc. Japan60(2008), no. 3, 767-792.http://projecteuclid.org/euclid. jmsj/1217884492 · Zbl 1148.55002
[14] J. P. May,A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. · Zbl 0923.55001
[15] C. A. McGibbon,Self-maps of projective spaces, Trans. Amer. Math. Soc.271(1982), no. 1, 325-346.https://doi.org/10.2307/1998769 · Zbl 0491.55014
[16] J. Milnor,On spaces having the homotopy type of aCW-complex, Trans. Amer. Math. Soc.90(1959), 272-280.https://doi.org/10.2307/1993204 · Zbl 0084.39002
[17] J. Mukai,Note on existence of the unstable Adams map, Kyushu J. Math.49(1995), no. 2, 271-279.https://doi.org/10.2206/kyushujm.49.271 · Zbl 0855.55012
[18] K. ¯Oguchi,Generators of2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. Tokyo Sect. I11(1964), 65-111 (1964). · Zbl 0129.38902
[19] H. Toda,Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, NJ, 1962. · Zbl 0101.40703
[20] K. Varadarajan,Generalised Gottlieb groups, J. Indian Math. Soc. (N.S.)33(1969), 141-164 (1970). · Zbl 0199.26501
[21] G. W. Whitehead,On products in homotopy groups, Ann. of Math (2)47(1946), 460- 475.https://doi.org/10 · Zbl 0060.41106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.