×

Gottlieb groups of function spaces. (English) Zbl 1371.55010

Summary: We analyse the Gottlieb groups of function spaces. Our results lead to explicit decompositions of the Gottlieb groups of many function spaces \(\mathrm{map}(X,Y)\) – including the (iterated) free loop space of \(Y\) – directly in terms of the Gottlieb groups of \(Y\). More generally, we give explicit decompositions of the generalised Gottlieb groups of \(\mathrm{map}(X,Y)\) directly in terms of generalised Gottlieb groups of \(Y\). Particular cases of our results relate to the torus homotopy groups of Fox. We draw some consequences for the classification of \(T\)-spaces and \(G\)-spaces. For \(X\), \(Y\) finite and \(Y\) simply connected, we give a formula for the ranks of the Gottlieb groups of \(\mathrm{map}(X,Y)\) in terms of the Betti numbers of \(X\) and the ranks of the Gottlieb groups of \(Y\). Under these hypotheses, the Gottlieb groups of \(\mathrm{map}(X,Y)\) are finite groups in all but finitely many degrees.

MSC:

55Q52 Homotopy groups of special spaces
55P35 Loop spaces
55P10 Homotopy equivalences in algebraic topology

References:

[1] [1]J.AguadéDecomposable free loop spaces. Canad. J. Math.39 no.4 (1987), 938-955.10.4153/CJM-1987-047-90915024 · Zbl 0644.55008
[2] [2]Y.Félix, S.Halperin and J.-C.ThomasRational homotopy theory. Graduate Texts in Math. vol. 205 (Springer-Verlag, New York, 2001).10.1007/978-1-4613-0105-9 · Zbl 0961.55002
[3] [3]Y.Felix, J.-C.Thomas and M.Vigué-PoirrierThe Hochschild cohomology of a closed manifold. Publ. Math. Inst. Hautes Études Sci.99 (2004), 235-252.10.1007/s10240-004-0021-y2075886 · Zbl 1060.57019
[4] [4]R. H.FoxHomotopy groups and torus homotopy groups. Ann. of Math.(2)49 (1948), 471-510.10.2307/1969292 · Zbl 0038.36602 · doi:10.2307/1969292
[5] [5]M.Golasiński, D.Gonçalves and P.WongGeneralisations of Fox homotopy groups, Whitehead products and Gottlieb groups. Ukraï n. Mat. Zh.57 no.3 (2005), 320-328. · Zbl 1094.55012
[6] [6]M.Golasiński and J.MukaiGottlieb groups of spheres. Topology47 no.6 (2008), 399-430.10.1016/j.top.2007.11.0012427733 · Zbl 1172.55004
[7] [7]D. H.GottliebEvaluation subgroups of homotopy groups. Amer. J. Math.91 (1969), 729-756.10.2307/23733490275424 · Zbl 0185.27102 · doi:10.2307/2373349
[8] [8]K.Gruher and P.SalvatoreGeneralized string topology operations. Proc. Lond. Math. Soc.(3)96 no.1 (2008), 78-106.10.1112/plms/pdm030 · Zbl 1143.57012
[9] [9]G. E.Lang, Jr. Localisations and evaluation subgroups. Proc. Amer. Math. Soc.50 (1975), 489-494.10.1090/S0002-9939-1975-0367986-0 · Zbl 0272.55020 · doi:10.1090/S0002-9939-1975-0367986-0
[10] [10]D.McDuffThe symplectomorphism group of a blow up. Geom. Dedicata132 (2008), 1-29.10.1007/s10711-007-9175-32396906 · Zbl 1155.53055 · doi:10.1007/s10711-007-9175-3
[11] [11]T.NaitoOn the mapping space homotopy groups and the free loop space homology groups. Algebr. Geom. Topol.11 no.4 (2011), 2369-2390.10.2140/agt.2011.11.23692835233 · Zbl 1237.55006
[12] [12]E. H.SpanierAlgebraic Topology (Corrected reprint). (Springer-Verlag, New York, 1981).10.1007/978-1-4684-9322-10666554 · doi:10.1007/978-1-4684-9322-1
[13] [13]N. E.SteenrodA convenient category of topological spaces. Michigan Math. J.14 (1967), 133-152.10.1307/mmj/10289997110210075 · Zbl 0145.43002 · doi:10.1307/mmj/1028999711
[14] [14]K.VaradarajanGeneralised Gottlieb groups. J. Indian Math. Soc. (N.S.)33 (1970), 141-164. · Zbl 0199.26501
[15] [15]M. H.Woo and J.-R.KimLocalisations and generalised Gottlieb subgroups. J. Korean Math. Soc.23 no.2 (1986), 151-157. · Zbl 0621.55008
[16] [16]M. H.Woo and Y. S.YoonT-spaces by the Gottlieb groups and duality. J. Austral. Math. Soc. Ser. A59 no.2 (1995), 193-203.10.1017/S14467887000385931346627 · Zbl 1002.55501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.