×

Characteristic classes for families of bundles. (English) Zbl 1497.55023

Given a fibration \(\xi\to X\), a \(\xi\)-fibration is defined to be a pair \((\pi,\zeta)\) consisting of a fibration \(\pi: E\to B\) with fiber \(X\) and a fiber bundle \(\zeta\to E\) such that the restriction to the fiber \(\zeta_b\) is equivalent to \(\xi\) “in an appropriate sense” [p. 50]. If \(B=*\), a \(\xi\)-fibration is precisely a fiber bundle equivalent to \(\xi\), so a \(\xi\)-fibration can be thought of as a family of fiber bundles equivalent to \(\xi\) parametrized by a base space \(B\). On the other hand, if the fiber of \(\xi\) is a point, a \(\xi\)-fibration is simply a fibration with fiber \(X\).
The article studies the universal \(\xi\)-fibration \(E_\xi\to \mathrm{Baut}(\xi)\) in the context of rational homotopy theory. The main result [Theorem 3.8] is the construction of a relative Sullivan model for this universal \(\xi\)-fibration. This is then used for a number of sample calculations and applications, among which one can find the computation of the rational cohomology of \(\mathrm{Baut}(\tau_{S^m})\), where \(\tau_M\) shall denote the tangent bundle of \(M\) [Theorems 1.1 & 1.2]. Since any fiber bundle with fiber \(M\) yields a \(\tau_M\)-fibration given by the vertical tangent bundle, one obtains a map \(B\mathrm{Diff}(M)\to \mathrm{Baut}(\tau_M)\) and one can consider the induced map \(H^*(\mathrm{Baut}(\tau_M);\mathbb{Q})\to H^*(B\mathrm{Diff}(M);\mathbb{Q})\). This is shown to be split injective if \(M=S^m\) [Corollary 6]. Furthermore, the rational cohomology of \(\mathrm{Baut}(\xi)\) is computed in the case, where \(\xi\) is a \(\mathbb{CP}^n\)-bundle with some restrictions on its structure group [Theorems 1.7 & 1.8].

MSC:

55R40 Homology of classifying spaces and characteristic classes in algebraic topology
57R20 Characteristic classes and numbers in differential topology
55P62 Rational homotopy theory

References:

[1] Baraglia, D.: Tautological classes of definite 4-manifolds. Geom. Topol. arXiv:2008.04519 [math.DG] (to appear) · Zbl 1489.57024
[2] Berglund, A., Rational homotopy theory of mapping spaces via Lie theory for \(L_\infty \)-algebras, Homol. Homotopy Appl., 17, 2, 343-369 (2015) · Zbl 1347.55010 · doi:10.4310/HHA.2015.v17.n2.a16
[3] Berglund, A., Rational models for automorphisms of fiber bundles, Doc. Math., 25, 239-265 (2020) · Zbl 1457.55006
[4] Berglund, A.; Madsen, I., Homological stability of diffeomorphism groups, Pure Appl. Math. Q., 9, 1, 1-48 (2013) · Zbl 1295.57038 · doi:10.4310/PAMQ.2013.v9.n1.a1
[5] Berglund, A.; Madsen, I., Rational homotopy theory of automorphisms of manifolds, Acta Math., 224, 67-185 (2020) · Zbl 1441.57033 · doi:10.4310/ACTA.2020.v224.n1.a2
[6] Block, J.; Lazarev, A., André-Quillen cohomology and rational homotopy of function spaces, Adv. Math., 193, 1, 18-39 (2005) · Zbl 1070.55006 · doi:10.1016/j.aim.2004.04.014
[7] Bott, R.; Tu, LW, Differential Forms in Algebraic Topology (1982), New York: Springer, New York · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[8] Buijs, U.; Murillo, A., Basic constructions in rational homotopy theory of function spaces, Ann. Inst. Fourier (Grenoble), 56, 3, 815-838 (2006) · Zbl 1122.55008 · doi:10.5802/aif.2201
[9] Buijs, U.; Murillo, A., The rational homotopy Lie algebra of function spaces, Comment. Math. Helv., 83, 4, 723-739 (2008) · Zbl 1169.55006 · doi:10.4171/CMH/141
[10] Burghelea, D.; Lashof, R., Geometric transfer and the homotopy type of the automorphism groups of a manifold, Trans. Am. Math. Soc., 269, 1, 1-38 (1982) · Zbl 0489.57008 · doi:10.1090/S0002-9947-1982-0637027-4
[11] Dold, A., Partitions of unity in the theory of fibrations, Ann. Math. (2), 78, 223-255 (1963) · Zbl 0203.25402 · doi:10.2307/1970341
[12] Félix, Y.; Halperin, S.; Thomas, J-C, Rational Homotopy Theory (2001), Berlin: Springer, Berlin · Zbl 0961.55002 · doi:10.1007/978-1-4613-0105-9
[13] Galatius, S.; Grigoriev, I.; Randal-Williams, O., Tautological rings for high-dimensional manifolds, Compos. Math., 153, 4, 851-866 (2017) · Zbl 1371.57023 · doi:10.1112/S0010437X16008332
[14] Galatius, S.; Randal-Williams, O., Stable moduli spaces of high-dimensional manifolds, Acta Math., 212, 2, 257-377 (2014) · Zbl 1377.55012 · doi:10.1007/s11511-014-0112-7
[15] Grigoriev, I., Relations among characteristic classes of manifold bundles, Geom. Topol., 21, 4, 2015-2048 (2017) · Zbl 1370.55005 · doi:10.2140/gt.2017.21.2015
[16] Grothendieck, A., La théorie des classes de Chern, Bull. Soc. Math. France, 86, 137-154 (1958) · Zbl 0091.33201 · doi:10.24033/bsmf.1501
[17] Hebestreit, F.; Land, M.; Lück, W.; Randal-Williams, O., A vanishing theorem for tautological classes of aspherical manifolds, Geom. Topol., 25, 1, 47-110 (2021) · Zbl 1469.55008 · doi:10.2140/gt.2021.25.47
[18] Igusa, K., The stability theorem for smooth pseudoisotopies, K-Theory, 2, 1-2, 1-355 (1988) · Zbl 0691.57011 · doi:10.1007/BF00533643
[19] Kȩdra, J.; McDuff, D., Homotopy properties of Hamiltonian group actions, Geom. Topol., 9, 121-162 (2005) · Zbl 1077.53072 · doi:10.2140/gt.2005.9.121
[20] Kupers, A., Randal-Williams, O.: On diffeomorphisms of even-dimensional discs. arXiv:2007.13884 [math.AT] · Zbl 1445.55011
[21] Kuribayashi, K., A rational model for the evaluation map, Georgian Math. J., 13, 1, 127-141 (2006) · Zbl 1097.18004 · doi:10.1515/GMJ.2006.127
[22] Kuribayashi, K.: On the rational cohomology of the total space of the universal fibration with an elliptic fibre. Contemp. Math. 519, 165-179. Homotopy theory of function spaces and related topics. American Mathematical Society, Providence (2010) · Zbl 1227.55010
[23] Lazarev, A., Models for classifying spaces and derived deformation theory, Proc. Lond. Math. Soc. (3), 109, 1, 40-64 (2014) · Zbl 1312.55010 · doi:10.1112/plms/pdt069
[24] Lupton, G.; Smith, SB, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra, 209, 1, 159-171 (2007) · Zbl 1112.55012 · doi:10.1016/j.jpaa.2006.05.018
[25] Lupton, G.; Smith, SB, Rationalized evaluation subgroups of a map. II. Quillen models and adjoint maps, J. Pure Appl. Algebra, 209, 1, 173-188 (2007) · Zbl 1113.55007 · doi:10.1016/j.jpaa.2006.05.019
[26] Madsen, I.; Weiss, M., The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. Math. (2), 165, 3, 843-941 (2007) · Zbl 1156.14021 · doi:10.4007/annals.2007.165.843
[27] May, JP, Classifying spaces and fibrations, Mem. Am. Math. Soc., 1, 1, 155 (1975) · Zbl 0321.55033
[28] Milnor, J.W., Stasheff, J.D.: Characteristic classes. Annals of Mathematics Studies, vol. 76. Princeton University Press (1974) · Zbl 0298.57008
[29] Prigge, N.: Tautological rings of fibrations. arXiv:1905.02676 [math.AT]
[30] Prigge, N.: On tautological classes of fibre bundles and self-embedding calculus. PhD thesis, University of Cambridge (2020)
[31] Quillen, D., Rational homotopy theory, Ann. Math. (2), 90, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[32] Randal-Williams, O., Some phenomena in tautological rings of manifolds, Sel. Math. (N.S.), 24, 4, 3835-3873 (2018) · Zbl 1404.55016 · doi:10.1007/s00029-018-0417-z
[33] Sasao, S., The homotopy of \({{\rm Map}}({{\mathbb{C}}{{\rm P}}}^m,{{\mathbb{C}}{{\rm P}}}^n)\), J. Lond. Math. Soc. (2), 8, 193-197 (1974) · Zbl 0284.55020 · doi:10.1112/jlms/s2-8.2.193
[34] Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. arXiv:1211.1647 [math.QA] · Zbl 0576.17008
[35] Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 47, 1977, 269-331 (1978) · Zbl 0374.57002
[36] Tanré, D., Homotopie rationnelle: modèles de Chen, Quillen, Sullivan (1983), Berlin: Springer, Berlin · Zbl 0539.55001 · doi:10.1007/BFb0071482
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.