×

Rationalized evaluation subgroups of a map. I: Sullivan models, derivations and \(G\)-sequences. (English) Zbl 1112.55012

Let \(f : X \to Y\) be a based map of simply connected CW complexes. Denote by \(map(X,Y:f)\) the path component of the space of maps \(X \to Y\) homotopic to \(f\). Evaluation at the base point of \(X\) gives the evaluation map \(\omega : map (X,Y:f) \to Y\).
Denote by \(\mathcal M_f : \mathcal M_Y \to \mathcal M_X\) the Sullivan minimal model of \(f\), and by \(\varepsilon : \mathcal M_X \to \mathbb{Q}\) the natural augmentation. Let now \(Der_n (\mathcal M_Y, \mathcal M_X)\) denote the vector space of \(\mathcal M_f\)-derivations of degree \(n\), \(n>0\) from \(\mathcal M_Y\) into \(\mathcal M_X\). With the differential on \(\mathcal M_X\) and \(\mathcal M_Y\), \(Der_*(\mathcal M_Y, \mathcal M_X)\) is a complex, and the composition with \(\varepsilon\),
\[ \varepsilon_* : Der_*(\mathcal M_Y, \mathcal M_X) \to Der_*(\mathcal M_Y, \mathbb{Q}) \]
is a morphism of complexes.
The authors prove that the map induced in homology is in a natural way isomorphic to the map induced by \(\omega\) on the rational homotopy groups, \[ \pi_*(map(X,Y:f))\otimes \mathbb{Q} \to \pi_*(Y)\otimes \mathbb{Q}\,. \] They deduce informations on the rational relative Gottlieb groups and the rationalized \(G\)-sequence associated to the evaluation map.

MSC:

55P62 Rational homotopy theory
55Q52 Homotopy groups of special spaces

References:

[1] Baues, H. J., Algebraic Homotopy, (Cambridge Studies in Advanced Mathematics, vol. 15 (1989), Cambridge University Press: Cambridge University Press Cambridge), MR 90i:55016 · Zbl 0322.55019
[2] Belegradek, I.; Kapovitch, V., Obstructions to nonnegative curvature and rational homotopy theory, J. Amer. Math. Soc., 16, 2, 259-284 (2003), (electronic) MR 2003i:53043 · Zbl 1027.53036
[3] Block, J.; Lazarev, A., André-Quillen cohomology and rational homotopy of function spaces, Adv. Math., 193, 1, 18-39 (2005), MR 2132759 (2006a:55014) · Zbl 1070.55006
[4] U. Buijs, A. Murillo, The rational homotopy Lie algebra of function spaces (preprint); U. Buijs, A. Murillo, The rational homotopy Lie algebra of function spaces (preprint) · Zbl 1169.55006
[5] Félix, Y.; Halperin, S.; Thomas, J.-C., (Rational Homotopy Theory. Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205 (2001), Springer-Verlag: Springer-Verlag New York), MR 2002d:55014 · Zbl 0961.55002
[6] Golasinski, M.; Mukai, J., Gottlieb groups of spheres (2004), Preprint · Zbl 1172.55004
[7] Gottlieb, D. H., Evaluation subgroups of homotopy groups, Amer. J. Math., 91, 729-756 (1969), MR 43 #1181 · Zbl 0185.27102
[8] Grivel, P.-P., Algèbres de Lie de dérivations de certaines algèbres pures, J. Pure Appl. Algebra, 91, 1-3, 121-135 (1994), MR 95a:55024 · Zbl 0788.55010
[9] Haefliger, A., Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc., 273, 2, 609-620 (1982), MR 84a:55010 · Zbl 0508.55019
[10] Hilton, P.; Mislin, G.; Roitberg, J., Localization of nilpotent groups and spaces, (North-Holland Mathematics Studies, No. 15 (1975), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam), MR 57 #17635 · Zbl 0323.55016
[11] Lee, K. Y.; Mimura, M.; Woo, M. H., Gottlieb groups of homogeneous spaces, Topology Appl., 145, 1-3, 147-155 (2004), MR 2100869 (2005g:55024) · Zbl 1064.55010
[12] Lee, K. Y.; Woo, M. H., The \(G\)-sequence and the \(\omega \)-homology of a CW-pair, Topology Appl., 52, 3, 221-236 (1993), MR 94i:55016 · Zbl 0792.55006
[13] Lupton, G., Variations on a conjecture of Halperin, (Homotopy and Geometry (Warsaw, 1997). Homotopy and Geometry (Warsaw, 1997), Banach Center Publ., vol. 45 (1998), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 115-135, MR 99m:55014 · Zbl 0931.55007
[14] G. Lupton, S.B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and adjoint maps, J. Pure Appl. Algebra (in press). doi:10.1016/j.jpaa.2006.05.019; G. Lupton, S.B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and adjoint maps, J. Pure Appl. Algebra (in press). doi:10.1016/j.jpaa.2006.05.019 · Zbl 1113.55007
[15] G. Lupton, S.B. Smith, Rank of the fundamental group of any component of a function space, Proc. Amer. Math. Soc. (in press); G. Lupton, S.B. Smith, Rank of the fundamental group of any component of a function space, Proc. Amer. Math. Soc. (in press) · Zbl 1116.55006
[16] Meier, W., Rational universal fibrations and flag manifolds, Math. Ann., 258, 3, 329-340 (1981/82), MR 83g:55009 · Zbl 0466.55012
[17] Pak, J.; Woo, M. H., A remark on \(G\)-sequences, Math. Japon., 46, 3, 427-432 (1997), MR 98i:55011 · Zbl 0906.55006
[18] Pan, J. Z.; Shen, X.; Woo, M. H., The \(G\)-sequence of a map and its exactness, J. Korean Math. Soc., 35, 2, 281-294 (1998), MR 99e:55024 · Zbl 0911.55006
[19] Pan, J. Z.; Woo, M. H., Exactness of \(G\)-sequences and monomorphisms, Topology Appl., 109, 3, 315-320 (2001), MR 2001i:55015 · Zbl 0974.55006
[20] Smith, S. B., Rational evaluation subgroups, Math. Z., 221, 3, 387-400 (1996), MR 97a:55014 · Zbl 0855.55009
[21] Spanier, E. H., Algebraic Topology (1989), Springer-Verlag: Springer-Verlag New York, Corrected reprint of the 1966 original. MR 96a:55001
[22] Sullivan, D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 47, 269-331 (1977), (1978) MR 58 #31119 · Zbl 0374.57002
[23] R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège, 1957, pp. 29-39. MR 19,669h; R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège, 1957, pp. 29-39. MR 19,669h
[24] Woo, M. H.; Lee, K. Y., On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc., 25, 1, 149-160 (1988), MR 89f:55011 · Zbl 0647.55010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.