×

On automorphisms of graded quasi-Lie algebras. (English) Zbl 1499.17019

Summary: Let \(\mathbb Z\) be the ring of integers and let \(K(\mathbb Z,2n)\) denote the Eilenberg-MacLane space of type \((\mathbb Z,2n)\) for \(n\ge 1\). In this article, we prove that the graded group \[ A_m:= \operatorname{Aut}(\pi_{\le 2mn+1}(\Sigma K(\mathbb Z,2n))/\text{torsions}) \] of automorphisms of the graded quasi-Lie algebras \(\pi_{\le 2mn+1}(\Sigma K(\pi_{\le 2mn+1},2n))\) modulo torsions that preserve the Whitehead products is a finite group for \(m\le 2\) and an infinite group for \(m\ge 3\), and that the group \(\operatorname{Aut}(\pi_*(\Sigma K(\mathbb Z,2n))/\text{torsions})\) is non-abelian. We extend and apply those results to techniques in localization (or rationalization) theory.

MSC:

17B70 Graded Lie (super)algebras
17B01 Identities, free Lie (super)algebras
55P20 Eilenberg-Mac Lane spaces
55P60 Localization and completion in homotopy theory
55S37 Classification of mappings in algebraic topology
Full Text: DOI

References:

[1] M. Arkowitz, The group of self-homotopy equivalences, Lecture Notes in Math. 1425, Springer-Verlag, 1990, 170-203. · Zbl 0713.55004
[2] M. Arkowitz, Co-H-spaces, Handbook of Algebraic Topology, North-Holland, New York, 1995, 1143-1173. · Zbl 0941.55001
[3] M. Arkowitz, D.-W. Lee, Properties of comultiplications on a wedge of spheres, Topology Appl. 157 (2010) 1607-1621. · Zbl 1203.55007
[4] M. Arkowitz, D.-W. Lee, Comultiplications of a wedge of two spheres, Science China Math. 54 (2011) 9-22. · Zbl 1229.55009
[5] M. Arkowitz, G. Lupton, Equivalence classes of homotopy-associative comultiplications of finite complexes, J. Pure Appl. Algebra 102 (1995) 109-136. · Zbl 0862.57026
[6] H. Cartan, D´etermination des alg‘ebresH∗(π,n;Z2) etH∗(π,n;Z2); groupes stables modulop, S´eminaire Henri Cartan, 7 (1), 1954-1955, Talk 11.
[7] F.R. Cohen, J.C. Moore, J.A. Neisendorfer, Torsion in homotopy groups, Ann. Math. 109 (1979) 121-168. · Zbl 0405.55018
[8] Y. F´elix, S. Halperin, J.C. Thomas, Rational homotopy theory, Springer-Verlag, New York-Heidelberg-Verlin, 2001. · Zbl 0961.55002
[9] P.J. Hilton, On the homotopy groups of the union of spheres, J. Lond. Math. Soc. (2) 30 (1955) 154-172. · Zbl 0064.17301
[10] P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and spaces, Math. Studies 15, North-Holland, Amsterdam, 1975. · Zbl 0323.55016
[11] D.-W. Lee, On the samen-type conjecture for the suspension of the infinite complex projective space, Proc. Amer. Math. Soc. 137(3) (2009) 1161-1168. · Zbl 1162.55006
[12] D.-W. Lee, On the samen-type structure for the suspension of the Eilenberg-MacLane spaces, J. Pure Appl. Algebra 214 (2010) 2027-2032. · Zbl 1196.55007
[13] D.-W. Lee, On the samen-type of the suspension of the infinite quaternionic projective space, J. Pure Appl. Algebra 217 (2013) 1325-1334. · Zbl 1267.55002
[14] D.-W. Lee, On the generalized sameN-type conjecture, Math. Proc. Camb. Phil. Soc. 157 (2014) 329-344. · Zbl 1312.55006
[15] D.-W. Lee, Comultiplication structures for a wedge of spheres, Filomat 30 (2016) 3525-3546. · Zbl 1437.55019
[16] D.-W. Lee, S. Lee, Homotopy comultiplications on thek-fold wedge of spheres, Topology Appl. 254 (2019) 145-170. · Zbl 1420.55025
[17] J.P. Lin, H-spaces with finiteness conditions, Handbook of Algebraic Topology, North-Holland, New York, 1995, 1095-1141. · Zbl 0941.55002
[18] K.-I. Maruyama, Localization and completion of nilpotent groups of automorphisms, Topology 46 (2007) 319-341. · Zbl 1231.55008
[19] C.A. McGibbon, J.M. Møller, How can you tell two spaces apart when they have the samen-type for alln?, Adams Memorial symposium on Algebraic Topology, N. Ray. G. Walker (eds.), London Math. Soc. Lecture Note Series 175 (1992) 131-144. · Zbl 0758.55002
[20] C.A. McGibbon, J.M. Møller, On infinite dimensional spaces that are rationally equivalent to a bouquet of spheres, Proc. 1990 Barcelona Conf. Algebraic Topology, Lecture Notes in Math. 1509, 1992, 285-293. · Zbl 0768.55008
[21] K. Morisugi, Projective elements in K-theory and self-maps ofΣCP∞, J. Math. Kyoto Univ. 38 (1998) 151-165. · Zbl 0924.55002
[22] J.W. Rutter, Spaces of homotopy self-equivalences, Lecture Notes in Math. 1662, Springer-Verlag, 1997. · Zbl 0889.55004
[23] J.P. Serre, Lie algebras and Lie groups, Lecture Notes in Math. 1500, Springer-Verlag, 1992. · Zbl 0742.17008
[24] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math. 61, Springer-Verlag, New York, Heidelberg, Berlin, 1978 · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.