×

The toral rank conjecture and variants of equivariant formality. (English. French summary) Zbl 1528.55006

This work concerns the restrictions on the topology of a space, \(M\), inherited from the existence of an almost free, non-trivial, action of a Lie group \(G\). (Recall that an action is said almost free if all isotropy groups are finite.) As a typical result in this direction, W. Y. Hsiang proved [Cohomology theory of topological transformation groups. Berlin-Heidelberg-New York: Springer-Verlag (1975; Zbl 0429.57011)] that, if \(G\) is compact and \(M\) is a compact \(G\)-manifold, then the action is almost free if, and only if, the rational equivariant cohomology of \(M\) is finite dimensional.
More precisely, the main goal of this paper is the study of a long standing conjecture of S. Halperin, called the toral rank conjecture or TRC, and which is stated as follows: if a (reasonable) space is equipped with an almost free action of a torus of dimension \(n\), then the sum of all its Betti numbers is greater than or equal to \(2^n\). This conjecture appears in [S. Halperin, Lond. Math. Soc. Lect. Note Ser. 93, 293–306 (1985; Zbl 0562.57015)] where the author proves that the TRC is true for homogeneous spaces, \(G/H\), with \(G\) connected and \(H\) closed and connected. Next, this conjecture has been the subject of numerous publications. For instance it has been verified for Kähler manifolds, some nilmanifolds, or with dimensional bounds linear in \(n\), but it is still open in general.
Here, the authors extend previous works in two directions when \(X\) is a compact Hausdorff \(T^n\)-space. – In the first one, they prove that the TRC is true if the associated Borel construction is formal in the sense of rational homotopy theory. – For the second one, their hypothesis is on the equivariant cohomology. Classical equivariant formality of an action means that the Serre spectral sequence of the Borel fibration degenerates at the \(E_{2}\)-term. Here, this notion is replaced by that of hyperformality. Let \(\varphi\colon H^*(BT^n;\mathbb Q)\to H^*_{T^n}(X;\mathbb Q)\) be the map induced by the Borel fibration \(X_{T^n}\to BT^n\). The action is said hyperformal if the kernel of \(\varphi\) is generated by a homogeneous regular sequence. M. Amann and L. Zoller prove that the TRC is true for hyperformal actions.
Apart from these two cases, they also expand the known hypotheses restricting the dimension of the spaces on which the torus operates and under which the TRC is true. The paper contains many concrete examples and a careful study of variations on the definition of hyperformality. Two appendices on minimal models for differential graded modules over a differential commutative graded algebra, or over an \(A_{\infty}\)-algebra, are also included.

MSC:

55N91 Equivariant homology and cohomology in algebraic topology
55P62 Rational homotopy theory
57S10 Compact groups of homeomorphisms

References:

[1] Allday, C., Examples of circle actions on symplectic spaces, (Homotopy and Geometry. Homotopy and Geometry, Warsaw, 1997. Homotopy and Geometry. Homotopy and Geometry, Warsaw, 1997, Banach Center Publ., vol. 45 (1998), Polish Acad. Sci. Inst. Math.: Polish Acad. Sci. Inst. Math. Warsaw), 87-90 · Zbl 0926.53028
[2] Allday, C., Transformation Groups: Symplectic Torus Actions and Toric Manifolds (2005), Hindustan Book Agency: Hindustan Book Agency India · Zbl 1109.14001
[3] Allday, C.; Puppe, V., Bounds on the torus rank, (Transformation Groups. Transformation Groups, Poznań 1985. Transformation Groups. Transformation Groups, Poznań 1985, Lecture Notes in Math., vol. 1217 (1986), Springer: Springer Berlin), 1-10 · Zbl 0596.57023
[4] Allday, C.; Puppe, V., Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics, vol. 32 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0799.55001
[5] Amann, M., Non-formal homogeneous spaces, Math. Z., 274, 3-4, 1299-1325 (2013) · Zbl 1273.57014
[6] Avramov, L.; Halperin, S., Through the looking glass: a dictionary between rational homotopy theory and local algebra, (Algebra, Algebraic Topology and Their Interactions. Algebra, Algebraic Topology and Their Interactions, Stockholm, 1983. Algebra, Algebraic Topology and Their Interactions. Algebra, Algebraic Topology and Their Interactions, Stockholm, 1983, Lecture Notes in Math., vol. 1183 (1986), Springer: Springer Berlin), 1-27 · Zbl 0588.13010
[7] Bazzoni, G.; Lupton, G.; Oprea, J., Hereditary properties of co-Kähler manifolds, Differ. Geom. Appl., 50, 126-139 (2017) · Zbl 1358.55010
[8] Blanchard, A., Sur les variétés analytiques complexes, Ann. Sci. Éc. Norm. Supér. (3), 73, 157-202 (1956) · Zbl 0073.37503
[9] Body, R.; Douglas, R., Rational homotopy and unique factorization, Pac. J. Math., 75, 2, 331-338 (1978) · Zbl 0403.55017
[10] Bredon, G. E., Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46 (1972), Academic Press: Academic Press New York · Zbl 0246.57017
[11] Deninger, C.; Singhof, W., On the cohomology of nilpotent Lie algebras, Bull. Soc. Math. Fr., 116, 1, 3-14 (1988) · Zbl 0653.17006
[12] Eisenbud, D., Commutative Algebra, Graduate Texts in Mathematics, vol. 150 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[13] Escher, C.; Searle, C., Torus actions, maximality, and non-negative curvature, J. Reine Angew. Math., 780, 221-264 (2021) · Zbl 1493.53049
[14] Félix, Y.; Halperin, S., Formal spaces with finite-dimensional rational homotopy, Transl. Am. Math. Soc., 270, 2, 575-588 (1982) · Zbl 0489.55009
[15] Félix, Y.; Halperin, S.; Thomas, J.-C., Gorenstein spaces, Adv. Math., 71, 1, 92-112 (1988) · Zbl 0659.57011
[16] Félix, Y.; Halperin, S.; Thomas, J.-C., Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0961.55002
[17] Félix, Y.; Oprea, J.; Tanré, D., Algebraic Models in Geometry, Oxford Graduate Texts in Mathematics, vol. 17 (2008), Oxford University Press: Oxford University Press Oxford · Zbl 1149.53002
[18] Fernández, M.; Muñoz, V., Formality of Donaldson submanifolds, Math. Z., 250, 1, 149-175 (2005) · Zbl 1071.57024
[19] Fine, B. L.; Triantafillou, G., On the equivariant formality of Kähler manifolds with finite group action, Can. J. Math., 45, 6, 1200-1210 (1993) · Zbl 0805.55009
[20] Franz, M.; Puppe, V., Exact sequences for equivariantly formal spaces, C. R. Math. Acad. Sci. Soc. R. Can., 33, 1, 1-10 (2011) · Zbl 1223.55003
[21] Galaz-García, F.; Kerin, M.; Radeschi, M., Torus actions on rationally elliptic manifolds, Math. Z., 297, 197-221 (2011) · Zbl 1458.55008
[22] Galaz-García, F.; Kerin, M.; Radeschi, M.; Wiemeler, M., Torus orbifolds, slice-maximal torus actions, and rational ellipticity, Int. Math. Res. Not. 2018, 18, 5786-5822 (2017) · Zbl 1418.57021
[23] Galaz-García, F.; Searle, C., Low-dimensional manifolds with non-negative curvature and maximal symmetry rank, Proc. Am. Math. Soc., 139, 7, 2559-2564 (2011) · Zbl 1220.53044
[24] Goertsches, O.; Rollenske, S., Torsion in equivariant cohomology and Cohen-Macaulay G-actions, Transform. Groups, 16, 4, 1063-1080 (2011) · Zbl 1254.55003
[25] Halperin, S.; Stasheff, J., Obstructions to homotopy equivalences, Adv. Math., 32, 3, 233-279 (1979) · Zbl 0408.55009
[26] Hilali, M. R., Action du tore \(T^n\) sur les espaces simplement connexes (1980), Université catholique de Louvain, PhD thesis
[27] Hinich, V., Homological algebra of homotopy algebras, Commun. Algebra, 25, 10, 3291-3323 (1997) · Zbl 0894.18008
[28] Hsiang, W.-Y., Cohomology Theory of Topological Transformation Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 85 (1975), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0429.57011
[29] Iyengar, S. B.; Walker, M. E., Examples of finite free complexes of small rank and small homology, Acta Math., 221, 1, 143-158 (2018) · Zbl 1403.13026
[30] Kadeishvili, T., Cohomology \(C_\infty \)-algebra and rational homotopy type, (Algebraic Topology—Old and New. Algebraic Topology—Old and New, Warsaw. Algebraic Topology—Old and New. Algebraic Topology—Old and New, Warsaw, Banach Center Publ., vol. 85 (2009), Polish Acad. Sci. Inst. Math.: Polish Acad. Sci. Inst. Math. Warsaw), 225-240 · Zbl 1181.55012
[31] Kadeishvili, T. V., The algebraic structure in the homology of an \(A(\infty)\)-algebra, Soobshch. Akad. Nauk Gruzin. SSR, 108, 2, 249-252 (1982), 1983 · Zbl 0535.55005
[32] Kadeishvili, T. V., Struktura \(A(\infty)\)-Algebry v Kogomologiyakh i Ratsional′Nyĭ Gomotopicheskiĭ Tip, Tbilisis A. Razmadzis Saxelobis Matematikis Institutis Shromebi, vol. 107 (1993), Metsniereba: Metsniereba Tbilisi · Zbl 0899.55013
[33] Kadeisvili, T. V., On the theory of homology of fiber spaces, International Topology Conference. International Topology Conference, Moscow State Univ., Moscow, 1979. International Topology Conference. International Topology Conference, Moscow State Univ., Moscow, 1979, Uspekhi Mat. Nauk 35, 3, 213, 183-188 (1980)
[34] Keller, B., Introduction to A-infinity algebras and modules, Homol. Homotopy Appl., 3, 1, 1-35 (2001) · Zbl 0989.18009
[35] Kirwan, F. C., Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, vol. 31 (1984), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0553.14020
[36] Kotani, Y.; Yamaguchi, T., A lower bound for the LS category of a formal elliptic space, Math. J. Okayama Univ., 47, 141-145 (2005) · Zbl 1093.55006
[37] Lefèvre-Hasegawa, K., Sur les \(A_\infty \)-catégories (2003), Université Paris 7, PhD thesis
[38] Lillywhite, S., Formality in an equivariant setting, Trans. Am. Math. Soc., 355, 7, 2771-2793 (2003) · Zbl 1021.55006
[39] Loday, J.-L.; Vallette, B., Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, vol. 346 (2012), Springer: Springer Heidelberg · Zbl 1260.18001
[40] Lupton, G.; Oprea, J., Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Am. Math. Soc., 347, 1, 261-288 (1995) · Zbl 0836.57019
[41] Markl, M., A cohomology theory for \(A(m)\)-algebras and applications, J. Pure Appl. Algebra, 83, 2, 141-175 (1992) · Zbl 0801.55004
[42] McCleary, J., A User’s Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, vol. 58 (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0959.55001
[43] Merkulov, S. A., Strong homotopy algebras of a Kähler manifold, Int. Math. Res. Not., 3, 153-164 (1999) · Zbl 0995.32013
[44] Muñoz, V., Torus rational fibrations, J. Pure Appl. Algebra, 140, 3, 251-259 (1999) · Zbl 0932.55009
[45] Prouté, A., \( A_\infty \)-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations, Repr. Theory Appl. Categ., 21, 1-99 (2011), Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday · Zbl 1245.55007
[46] Roig, A., Minimal resolutions and other minimal models, Publ. Mat., 37, 2, 285-303 (1993) · Zbl 0814.55005
[47] Roig, A., Formalizability of dg modules and morphisms of cdg algebras, Ill. J. Math., 38, 3, 434-451 (1994) · Zbl 0799.55008
[48] Schlessinger, M.; Stasheff, J., The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra, 38, 2-3, 313-322 (1985) · Zbl 0576.17008
[49] Scull, L., Equivariant formality for actions of torus groups, Can. J. Math., 56, 6, 1290-1307 (2004) · Zbl 1068.55014
[50] Ustinovskiĭ, Y. M., On almost free torus actions and the Horrocks conjecture, Dal’nevost. Mat. Zh., 12, 1, 98-107 (2012) · Zbl 1287.55004
[51] Walker, M. E., Total Betti numbers of modules of finite projective dimension, Ann. Math., 186, 2, 641-646 (2017) · Zbl 1386.13040
[52] Zoller, L., On the toral rank conjecture and variants of equivariant formality (2019), Philipps-Universität Marburg, PhD thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.