×

Cohomologically symplectic spaces: Toral actions and the Gottlieb group. (English) Zbl 0836.57019

The purpose of this paper is to study toral actions on closed symplectic manifolds. The authors point out an algebraic topological foundation which underlies many of the results arising in the study of symplectic actions. This allows to generalize some of them to cohomologically- symplectic manifolds: there is a class \(\omega \in H^2 (M, \mathbb{Q})\) such that \(\omega^n\) is a top class for \(M^{2n}\). Since compact Kähler manifolds are symplectic manifolds which satisfy the hard Lefschetz property, it is natural to introduce symplectic manifolds of Lefschetz type: \(\omega^{n - 1} : H^1 (M) \cong H^{2n - 1} (M)\) \((\dim M = 2n)\). Such a manifold \(M\) is diffeomorphic to a torus and a torus acts cohomologically freely on \(M\) if and only if all isotropy groups are finite. Many other results of this type are proved along the paper.

MSC:

57R19 Algebraic topology on manifolds and differential topology
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
55P62 Rational homotopy theory
57S25 Groups acting on specific manifolds
Full Text: DOI

References:

[1] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. · Zbl 0393.70001
[2] C. Allday and V. Puppe, Bounds on the torus rank, Transformation groups, Poznań 1985, Lecture Notes in Math., vol. 1217, Springer, Berlin, 1986, pp. 1 – 10. · Zbl 0612.55014 · doi:10.1007/BFb0072811
[3] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1 – 28. · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[4] M. Audin, The topology of torus actions on symplectic manifolds, Progress in Math., 93, Birkhäuser, 1991. · Zbl 0726.57029
[5] Michèle Audin, Exemples de variétés presque complexes, Enseign. Math. (2) 37 (1991), no. 1-2, 175 – 190 (French). · Zbl 0736.53036
[6] Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174 – 227 (French). · Zbl 0393.58007 · doi:10.1007/BF02566074
[7] Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513 – 518. · Zbl 0672.53036 · doi:10.1016/0040-9383(88)90029-8
[8] Chal Benson and Carolyn S. Gordon, Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), no. 4, 971 – 980. · Zbl 0689.53036
[9] Israel Berstein, On covering spaces and Lie group actions, Conference on algebraic topology in honor of Peter Hilton (Saint John’s, Nfld., 1983) Contemp. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1985, pp. 11 – 13. · Zbl 0564.57026 · doi:10.1090/conm/037/789788
[10] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. · Zbl 0246.57017
[11] William Browder and Wu Chung Hsiang, \?-actions and the fundamental group, Invent. Math. 65 (1981/82), no. 3, 411 – 424. · Zbl 0519.57034 · doi:10.1007/BF01396626
[12] Eugenio Calabi, On the group of automorphisms of a symplectic manifold, Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 1 – 26. · Zbl 0051.13103
[13] Andrew Casson and Daniel Henry Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977), no. 1, 159 – 189. · Zbl 0375.55015 · doi:10.2307/2374013
[14] P. E. Conner and Frank Raymond, Holomorphic Seifert fiberings, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Springer, Berlin, 1972, pp. 124 – 204. Lecture Notes in Math., Vol. 299.
[15] P. E. Conner and Frank Raymond, Injective operations of the toral groups. II, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Springer, Berlin, 1972, pp. 109 – 123. Lecture Notes in Math., Vol. 299. · Zbl 0236.57023
[16] P. E. Conner and Frank Raymond, Injective operations of the toral groups, Topology 10 (1971), 283 – 296. · Zbl 0236.57023 · doi:10.1016/0040-9383(71)90021-8
[17] Luis A. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375 – 380. · Zbl 0596.53030 · doi:10.1016/0040-9383(86)90050-9
[18] Andreas Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), no. 4, 335 – 356. · Zbl 0683.58017 · doi:10.1002/cpa.3160420402
[19] Theodore Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1 – 8. · Zbl 0088.38002 · doi:10.2307/1969889
[20] Hansjörg Geiges, Symplectic structures on \?²-bundles over \?², Duke Math. J. 67 (1992), no. 3, 539 – 555. · Zbl 0763.53037 · doi:10.1215/S0012-7094-92-06721-4
[21] Viktor L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), no. 4, 625 – 640. · Zbl 0759.57023 · doi:10.1007/BF02571819
[22] -, New generalizations of Poincaré’s geometric theorem, Funct. Anal. Appl. 21 (1987), 100-106. · Zbl 0656.58027
[23] Viktor L. Ginzburg and Alan Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (1992), no. 2, 445 – 453. · Zbl 0766.58018
[24] R. Gompf, Some new symplectic \( 4\)-manifolds, preprint 1993.
[25] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840 – 856. · Zbl 0148.17106 · doi:10.2307/2373248
[26] Daniel Henry Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23 – 50. · Zbl 0251.55018
[27] Daniel Henry Gottlieb, The trace of an action and the degree of a map, Trans. Amer. Math. Soc. 293 (1986), no. 1, 381 – 410. · Zbl 0593.57017
[28] Daniel Henry Gottlieb, Lifting actions in fibrations, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 217 – 254.
[29] Daniel Henry Gottlieb, Splitting off tori and the evaluation subgroup of the fundamental group, Israel J. Math. 66 (1989), no. 1-3, 216 – 222. · Zbl 0684.55005 · doi:10.1007/BF02765893
[30] Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729 – 756. · Zbl 0185.27102 · doi:10.2307/2373349
[31] Stephen Halperin, Rational homotopy and torus actions, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 293 – 306. · Zbl 0562.57015
[32] Kyung Bai Lee and Frank Raymond, Maximal torus actions on solvmanifolds and double coset spaces, Internat. J. Math. 2 (1991), no. 1, 67 – 76. · Zbl 0724.57025 · doi:10.1142/S0129167X91000065
[33] Gregory Lupton and John Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), no. 1-3, 193 – 207. · Zbl 0789.55010 · doi:10.1016/0022-4049(94)90142-2
[34] Dusa McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J. Differential Geom. 20 (1984), no. 1, 267 – 277. · Zbl 0567.53031
[35] Dusa McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), no. 2, 149 – 160. · Zbl 0696.53023 · doi:10.1016/0393-0440(88)90001-0
[36] Dusa McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), no. 2, 353 – 366. · Zbl 0538.53041 · doi:10.1007/BF01388450
[37] G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954), 1 – 27. · Zbl 0057.26103 · doi:10.2307/1969700
[38] Peter J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986. · Zbl 0588.22001
[39] Kaoru Ono, Equivariant projective imbedding theorem for symplectic manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 2, 381 – 392. · Zbl 0655.53027
[40] Kaoru Ono, Obstruction to circle group actions preserving symplectic structure, Hokkaido Math. J. 21 (1992), no. 1, 99 – 102. · Zbl 0749.53020 · doi:10.14492/hokmj/1381413269
[41] John Oprea, The category of nilmanifolds, Enseign. Math. (2) 38 (1992), no. 1-2, 27 – 40. · Zbl 0755.55004
[42] John Oprea, A homotopical Conner-Raymond theorem and a question of Gottlieb, Canad. Math. Bull. 33 (1990), no. 2, 219 – 229. · Zbl 0661.57014 · doi:10.4153/CMB-1990-035-6
[43] Michał Sadowski, Equivariant splittings associated with smooth toral actions, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 183 – 192. · Zbl 0739.57023 · doi:10.1007/BFb0084746
[44] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[45] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467 – 468. · Zbl 0324.53031
[46] Robert B. Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin-New York, 1976. · Zbl 0347.20018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.