×

A Fourier error analysis for radial basis functions and the discrete singular convolution on an infinite uniform grid. I: Error theorem and diffusion in Fourier space. (English) Zbl 1410.65015

Summary: On an infinite grid with uniform spacing \(h\), the cardinal basis \(C_{j}(x; h)\) for many spectral methods consists of translates of a “master cardinal function”, \(C_{j}(x; h) = C(x/h - j)\). The cardinal basis satisfies the usual Lagrange cardinal condition, \(C_{j}(mh) = \delta_{jm}\) where \(\delta_{jm}\) is the Kronecker delta function. All such “shift-invariant subspace” master cardinal functions are of “localized-sinc” form in the sense that \(C(X) = \mathrm{sinc}(X)s(X)\) for a localizer function \(s\) which is smooth and analytic on the entire real axis and the Whittaker cardinal function is \(\mathrm{sinc}(X)\equiv \mathrm{sin}\;(\pi X)/(\pi X)\). The localized-sinc approximation to a general \(f(x)\) is \(f^{\text{localized} - \mathrm{sinc}}(x; h) \equiv \sum_{j = - \infty}^\infty f(j h) s([x - j h] / h) \mathrm{sinc}([{x} - {jh}] / h)\). In contrast to most radial basis function applications, matrix factorization is unnecessary. We prove a general theorem for the Fourier transform of the interpolation error for localized-sinc bases. For exponentially-convergent radial basis functions (RBFs) (Gaussians, inverse multiquadrics, etc.) and the basis functions of the Discrete Singular Convolution (DSC), the localizer function is known exactly or approximately. This allows us to perform additional error analysis for these bases. We show that the error is similar to that for sinc bases except that the localizer acts like a diffusion in Fourier space, smoothing the sinc error.

MSC:

65D05 Numerical interpolation
41A30 Approximation by other special function classes
42A15 Trigonometric interpolation
43A50 Convergence of Fourier series and of inverse transforms
Full Text: DOI

References:

[1] Bao, G.; Wei, G. W.; Zhao, S., Numerical solution of the Helmholtz equation with high wavenumbers, Inter. J. Numer. Meth. Eng., 59, 3, 389-408, (2004) · Zbl 1043.65132
[2] Boyd, J. P., New directions in solitons and nonlinear periodic waves: polycnoidal waves, imbricated solitons, weakly non-local solitary waves and numerical boundary value algorithms, (Wu, T.-Y.; Hutchinson, J. W., Advances in Applied Mechanics, Advances in Applied Mechanics, (1989), Academic Press New York), 1-82 · Zbl 0702.76023
[3] Boyd, J. P., Chebyshev and Fourier Spectral Methods, 665, (2001), Dover Mineola, New York · Zbl 0994.65128
[4] Boyd, J. P., A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximating function (LDAF) method is inferior to high order finite differences, J. Comput. Phys., 214, 2, 538-549, (2006) · Zbl 1092.65020
[5] Boyd, J. P., The near-equivalence of five species of spectrally-accurate radial basis functions (RBFs): asymptotic approximations to the RBF cardinal functions on a uniform, unbounded grid, J. Comput. Phys., 230, 4, 1304-1318, (2011) · Zbl 1210.65029
[6] Boyd, J. P., A Fourier error analysis for radial basis functions and the discrete singular convolution on an infinite uniform grid, part 2: spectral-plus is special, Appl. Math. Comput., 225, 695-707, (2015) · Zbl 1334.65036
[7] Boyd, J. P.; Wang, L., An analytic approximation to the cardinal functions of Gaussian radial basis functions on a one-dimensional infinite uniform lattice, Appl. Math. Comput., 215, 2215-2223, (2009) · Zbl 1178.65012
[8] Boyd, J. P.; Wang, L., Truncated Gaussian RBF differences are always inferior to finite differences of the same stencil width, Commun. Comput. Phys., 5, 1, 42-60, (2009) · Zbl 1364.65262
[9] Boyd, J. P.; Wang, L., Asymptotic coefficients for Gaussian radial basis function interpolants, Appl. Math. Comput., 216, 2394-2407, (2010) · Zbl 1200.41001
[10] Buhmann, M. D., Radial basis functions, Acta Numer., 9, 1-38, (2000) · Zbl 1004.65015
[11] Buhmann, M. D., Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, (2003), Cambridge University Press · Zbl 1038.41001
[12] Butzer, P. L.; Ferreira, P. J.S. G.; Higgins, J. R.; Saitoh, S.; Schmeisser, G.; Stens, R. L., Interpolation and sampling: E.T. Whittaker, K. ogura and their followers, J. Fourier Anal. Appl., 17, 2, 320-354, (2011) · Zbl 1213.94027
[13] Chinchapatnam, P. P.; Djidjeli, K.; Nair, P. B., Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation, Comput. Meth. Appl. Mech. Eng., 195, 19-22, 2432-2453, (2006) · Zbl 1125.76053
[14] Civalek, O., Discrete singular convolution method and applications to free vibration analysis of circular and annular plates, Struct. Eng. Mech., 29, 2, 237-240, (2008)
[15] Civalek, O., Vibration analysis of conical panels using the method of discrete singular convolution, Commun. Numer. Meth. Eng., 24, 3, 169-181, (2008) · Zbl 1151.74361
[16] Fedoseyev, A. I.; Friedman, M. J.; Kansa, E. J., Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary, Comput. Math., 43, 439-455, (2002) · Zbl 0999.65137
[17] Feng, B. F.; Wei, G. W., A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations, J. Comput. Appl. Math., 145, 1, 183-188, (2002) · Zbl 1001.65110
[18] Fornberg, B.; Flyer, N., Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids, Adv. Comput. Math., 23, 1-2, 5-20, (2005) · Zbl 1067.65015
[19] Kansa, E. J., Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics- II. solutions to hyperbolic, parabolic, and elliptic partial differential equations, Comput. Math. Appl ., 19, 8 & 9, 147-161, (1990) · Zbl 0850.76048
[20] Kansa, E. J.; Power, H.; Fasshauer, G. E.; Ling, L., A volumetric integral radial basis function method for time-dependent partial differential equations: I. formulation, J. Eng. Anal. Boundary Element, 28, 10, 1191-1206, (2004) · Zbl 1159.76363
[21] Le Gia, Q. T., Approximation of parabolic PDEs on spheres using spherical basis functions, Adv. Comput. Math., 22, 4, 377-397, (2005) · Zbl 1065.35024
[22] Ling, L.; Opfer, R.; Schaback, R., Results on meshless collocation techniques, Eng. Anal. Boundary Element, 30, 4, 247-253, (2006) · Zbl 1195.65177
[23] Lund, J.; Bowers, K. L., Sinc Methods For Quadrature and Differential Equations, 304, (1992), Society for Industrial and Applied Mathematics Philadelphia · Zbl 0753.65081
[24] Maz’ya, V.; Schmidt, G., Approximate Approximations, 349, (2007), American Mathematical Society Providence · Zbl 1120.41013
[25] Micchelli, C. A.; Xu, Y.; Zhang, H., Optimal learning of bandlimited functions from localized sampling, J. Complex., 25, 2, 85-114, (2009) · Zbl 1180.65182
[26] Moroney, T. J.; Turner, I. W., A three-dimensional finite volume method based on radial basis functions for the accurate computational modeling of nonlinear diffusion equations, J. Comput. Phys., 225, 2, 1409-1426, (2007) · Zbl 1122.65113
[27] Platte, R. B.; Driscoll, T. A., Computing eigenmodes of elliptic operators using radial basis functions, Comput. Math. Appl., 48, 3-4, 1251-1268, (2006) · Zbl 1152.41311
[28] Qian, L., On the regularized Whittaker-kotel’nikov-Shannon sampling formula, Proc. Amer. Math. Soc., 131, 4, 1169-1176, (2003) · Zbl 1018.94004
[29] Qian, L. W.; Creamer, D. B., Localization of the generalized sampling series and its numerical application, SIAM J. Numer. Anal., 43, 2500-2516, (2006) · Zbl 1105.94003
[30] Qian, L. W.; Creamer, D. B., A modification of the sampling series with a Gaussian multiplier, Sampl. Theor. Signal Image Process., 5, 307-325, (2006)
[31] Qian, L. W.; Ogawa, H., Modified sinc kernels for the localized sampling series, Sampl. Theor. Signal Image Process., 4, 121-139, (2005) · Zbl 1137.94330
[32] Riemenschneider, S. D.; Sivakumar, N., On cardinal interpolation by Gaussian radial-basis functions: properties of fundamental functions and estimates for Lebesgue constants, J. Analy. Math., 79, 33-61, (1999) · Zbl 0988.41011
[33] Schaback, R.; Wendland, H., Kernel techniques: from machine learning to meshless methods, Acta Numer., 15, 1, 543-639, (2006) · Zbl 1111.65108
[34] Schmeisser, G.; Stenger, F., Sinc approximation with a Gaussian multiplier, Sampl. Theor. Signal Image Process., 6, 2, 199-221, (2007) · Zbl 1156.94326
[35] Stenger, F., Sinc Methods, 500, (1993), Springer-Verlag New York
[36] Stenger, F., Summary of sinc numerical methods, J. Comput. Appl. Math., 121, 1-2, 379-420, (2000) · Zbl 0964.65010
[37] Wei, G. W.; Zhao, S., On the validity of ‘a proof that the discrete singular convolution (DSC)/Lagrange-distributed approximation function (LDAF) method is inferior to high order finite differences’, J. Comput. Phys., 226, 2, 2389-2392, (2007) · Zbl 1161.65359
[38] Wendland, H., Scattered Data Approximation, (2005), Cambridge University Press · Zbl 1075.65021
[39] Wong, S. M.; Hon, Y. C.; Golberg, M. A., Compactly supported radial basis functions for shallow water equations, Appl. Math. Comput., 127, 79-101, (2002) · Zbl 1126.76352
[40] Zayed, A. I., Handbook of function and generalized function transformations, Mathematical Sciences Reference Series, (1996), CRC Press Boca Raton, FL · Zbl 0851.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.