×

A proof that the discrete singular convolution (DSC)/Lagrange-distributed approximating function (LDAF) method is inferior to high order finite differences. (English) Zbl 1092.65020

The author discusses the approximation of the derivatives of a function by means of finite differences. The discrete singular convolution (DSC) and Lagrange-distributed approximating function (LDAF) methods are investigated by the author, as a single algorithm. Sum-accelerated pseudospectral methods and so called “sinc” basis are successfully used. By means of Fourier analysis and error theorems, it is shown that the DSC method is, sometimes, worse than the standard finite differences, in differentiating the exponential function. This does not mean that DSC is spectrally inferior to finite differences (in the sens of giving a poorer approximation to the eigenvalue of the first derivative operator ) for all wave numbers and all choices of the DSC width parameter. For some values of this parameter, DSC errors are slightly smaller than finite differences for wavelengths between two and four times the grid spacing. The conclusion of the author is that the DSC/LDAF method is never the method of choice for approximating derivatives.
Added in 2009: See also the comment by Wei and Zhao in J. Comput. Phys. 226, No. 2, 2389–2392 (2007; Zbl 1161.65359).

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics

Citations:

Zbl 1161.65359

Software:

Matlab
Full Text: DOI

References:

[1] Adams, N. A., Direct numerical simulation of turbulent compression ramp flow, Theoret. Comput. Fluid Dyn., 12, 109-129 (1998) · Zbl 0931.76033
[2] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[3] Bao, G.; Wei, G. W.; Zhao, S., Numerical solution of the Helmholtz equation with high wavenumbers, Int. J. Numer. Meth. Eng., 59, 389-408 (2004) · Zbl 1043.65132
[4] Boole, G., A Treatise on the Calculus of Finite Differences (1860), Macmillan: Macmillan Cambridge · Zbl 1202.65003
[5] Boyd, J. P., Sum-accelerated pseudospectral methods: the Euler-accelerated sinc algorithm, Appl. Numer. Math., 7, 287-296 (1991) · Zbl 0726.65019
[6] Boyd, J. P., Sum-accelerated pseudospectral methods: finite differences and sech-weighted differences, Comput. Meth. Appl. Mech. Eng., 116, 1-11 (1994) · Zbl 0845.65041
[7] Boyd, J. P., A lag-averaged generalization of Euler’s method for accelerating series, Appl. Math. Comput., 72, 146-166 (1995) · Zbl 0838.65002
[8] Boyd, J. P., The Erfc-Log filter and the asymptotics of the Vandeven and Euler sequence accelerations, (Ilin, A. V.; Scott, L. R., Proceedings of the Third International Conference on Spectral and High Order Methods, Houston, TX (1996), Houston Journal of Mathematics), 267-276
[9] Boyd, J. P., Weakly nonlocal solitary waves and beyond-all-orders asymptotics: generalized solitons and hyperasymptotic perturbation theory, Mathematics and Its Applications, vol. 442 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Amsterdam, 608pp · Zbl 0905.76001
[10] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover: Dover Mineola, New York, 665pp · Zbl 0987.65122
[11] Colonius, T., Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations, AIAA J., 35, 1126-1133 (1997) · Zbl 0909.76058
[12] Farnum, J. D.; Mazziotti, D. A., Spectral difference Lanczos method for efficient time propagation in quantum control theory, J. Chem. Phys., 120, 5962-5967 (2004)
[13] Feng, B. F.; Wei, G. W., A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations, J. Comput. Appl. Math., 145, 183-188 (2002) · Zbl 1001.65110
[14] Fornberg, B., High order finite differences and the pseudospectral method on staggered grids, SIAM J. Numer. Anal., 27, 904-918 (1990) · Zbl 0705.65076
[15] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge University Press: Cambridge University Press New York · Zbl 0844.65084
[16] Gaitonde, D. V.; Shang, J. S., Optimized compact-difference-based finite-volume schemes for linear wave phenomena, J. Comput. Phys., 138, 617-643 (1997) · Zbl 0898.65055
[17] Gaitonde, D. V.; Shang, J. S.; Young, J. L., Practical aspects of higher-order numerical schemes for wave propagation phenomena, Int. J. Numer. Meth. Eng., 45, 1849-1869 (1999) · Zbl 0959.65103
[18] Gray, S. K.; Goldfield, E. M., Dispersion fitted finite difference method with applications to molecular quantum mechanics, J. Chem. Phys., 115, 8331-8344 (2001) · Zbl 1078.74047
[19] Haras, Z.; Ta’asan, S., Finite difference schemes for long-time integration, J. Comput. Phys., 114, 265-279 (1994) · Zbl 0808.65083
[20] Hoffman, D. K.; Nayar, N.; Sharafeddin, O. A.; Kouri, D. J., Analytic banded approximation for the discretized free propagator, J. Phys. Chem., 95, 8299-8305 (1991)
[21] Holberg, O., Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena, Geophys. Prospecting, 35, 629-655 (1987)
[22] Holberg, O., Towards optimum one-way wave-propagation, Geophys. Prospecting, 36, 99-114 (1988)
[23] Jordan, D. K.; Mazziotti, D. A., Spectral differences in real-space electronic structure calculations, J. Chem. Phys., 120, 574-578 (2004)
[24] Lee, C.; Seo, Y., A new compact spectral scheme for turbulence simulations, J. Comput. Phys., 183, 438-469 (2002) · Zbl 1021.76036
[25] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[26] Liu, Y., Fourier analysis of numerical algorithms for the Maxwell equations, J. Comput. Phys., 124, 396-416 (1996) · Zbl 0858.65125
[27] Lockard, D. P.; Brentner, K. S.; Atkins, H. L., High-accuracy algorithms for computational aeroacoustics, AIAA J., 33, 246-251 (1995) · Zbl 0825.76490
[28] Lund, J.; Bowers, K. L., Sinc Methods for Quadrature and Differential Equations (1992), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, 304pp · Zbl 0753.65081
[29] Mazziotti, D. A., Comment on ‘high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics’ [J. Chem. Phys. 111 (1999) 10827], J. Chem. Phys., 115, 6794-6795 (1999)
[30] Mazziotti, D. A., Spectral difference methods for solving differential equations, Chem. Phys. Lett., 299, 473-480 (1999)
[31] Orlin, P. A.; Perkins, A. L.; Heburn, G., A frequency accurate spatial derivative finite difference approximation, Numer. Meth. Partial Diff. Eqs., 13, 549-559 (1997) · Zbl 0902.65032
[32] Orlin, P. A.; Perkins, A. L.; Heburn, G., A frequency accurate spatial derivative finite difference approximation, Numer. Meth. Partial Diff. Eqs., 15, 569-589 (1997)
[33] Orlin, P. A.; Perkins, A. L.; Heburn, G., A frequency accurate temporal derivative finite difference approximation, J. Comput. Acoust., 5, 371-382 (1997) · Zbl 1360.76189
[34] Stenger, F., Sinc Methods (1993), Springer: Springer New York, 500pp · Zbl 0803.65141
[35] Stenger, F., Summary of sinc numerical methods, J. Comput. Appl. Math., 121, 379-420 (2000) · Zbl 0964.65010
[36] Tam, C. K.W.; Li, Y., Wavenumber-extended high-order upwind-biased finite-difference schemes for computational acoustics, J. Comput. Acoust., 133, 235-255 (1997) · Zbl 0878.65071
[37] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262-283 (1993) · Zbl 0790.76057
[38] Trefethen, L. N., Spectral Methods in Matlab (2000), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0953.68643
[39] Vanel, F. O.; Baysal, O., Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves, J. Vibr. Sound: Trans. ASME, 119, 250-257 (1997)
[40] Wan, D. C.; Zhou, Y. C.; Wei, G. W., Numerical solution of incompressible flows by discrete singular convolution, Int. J. Numer. Meth. Fluids, 38, 789-810 (2002) · Zbl 1005.76072
[41] Wei, G. W., Discrete singular convolution for the solution of the Fokker-Planck equation, J. Chem. Phys., 110, 8930-8942 (1999)
[42] Wesseling, P., Consruction of accurate difference schemes for hyperbolic partial differential equations, J. Eng. Math., 7, 19-31 (1973) · Zbl 0252.65071
[43] Zhao, S.; Wei, G. W., Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher’s equation, SIAM J. Sci. Comput., 25, 127-147 (2003) · Zbl 1043.35015
[44] Zingg, D. W., Comparison of high-accuracy finite-difference methods for linear wave propagation, SIAM J. Sci. Comput., 22, 476-502 (2000) · Zbl 0968.65061
[45] Zingg, D. W.; Lomax, H.; Jurgens, H., High-accuracy finite-difference schemes for linear wave propagation, SIAM J. Sci. Comput., 17, 328-346 (1996) · Zbl 0877.65063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.