×

Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy. (English. French summary) Zbl 1527.35276

Summary: We investigate the nonlocal version of the Abels-Garcke-Grün (AGG) system, which describes the motion of a mixture of two viscous incompressible fluids. This consists of the incompressible Navier-Stokes-Cahn-Hilliard system characterized by concentration-dependent density and viscosity, and an additional flux term due to interface diffusion. In particular, the Cahn-Hilliard dynamics of the concentration (phase-field) is governed by the aggregation/diffusion competition of the nonlocal Helmholtz free energy with singular (logarithmic) potential and constant mobility. We first prove the existence of global strong solutions in general two-dimensional bounded domains and their uniqueness when the initial datum is strictly separated from the pure phases. The key points are a novel well-posedness result of strong solutions to the nonlocal convective Cahn-Hilliard equation with singular potential and constant mobility under minimal integral assumption on the incompressible velocity field, and a new two-dimensional interpolation estimate for the \(L^4(\Omega)\) control of the pressure in the stationary Stokes problem. Secondly, we show that any weak solution, whose existence was already known, is globally defined, enjoys the propagation of regularity and converges towards an equilibrium (i.e., a stationary solution) as \(t\to\infty\). Furthermore, we demonstrate the uniqueness of strong solutions and their continuous dependence with respect to general (not necessarily separated) initial data in the case of matched densities and unmatched viscosities (i.e., the nonlocal model H with variable viscosity, singular potential and constant mobility). Finally, we provide a stability estimate between the strong solutions to the nonlocal AGG model and the nonlocal Model H in terms of the difference of densities.

MSC:

35Q35 PDEs in connection with fluid mechanics
76T06 Liquid-liquid two component flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
35B40 Asymptotic behavior of solutions to PDEs
35D35 Strong solutions to PDEs
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Abels, H., Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Commun. Math. Phys., 289, 45-73 (2009) · Zbl 1165.76050
[2] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463-506 (2009) · Zbl 1254.76158
[3] Abels, H., Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., 44, 316-340 (2012) · Zbl 1333.76079
[4] Abels, H.; Breit, D., Weak solutions for a non-Newtonian diffuse interface model with different densities, Nonlinearity, 29, 3426-3453 (2016) · Zbl 1354.35084
[5] Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15, 453-480 (2013) · Zbl 1273.76421
[6] Abels, H.; Depner, D.; Garcke, H., On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 30, 1175-1190 (2013) · Zbl 1347.76052
[7] Abels, H.; Garcke, H., Weak solutions and diffuse interface models for incompressible two-phase flows, (Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), Springer: Springer Cham), 1267-1327
[8] Abels, H.; Garcke, H.; Giorgini, A., Global regularity and asymptotic stabilization for the incompressible Navier-Stokes-Cahn-Hilliard model with unmatched densities, Math. Ann. (2023)
[9] Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, Article 1150013 pp. (2012) · Zbl 1242.76342
[10] Abels, H.; Terasawa, Y., Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci., 43, 3200-3219 (2020) · Zbl 1454.35251
[11] Abels, H.; Terasawa, Y., Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities, Discrete Contin. Dyn. Syst., Ser. S, 15, 1871-1881 (2022) · Zbl 1513.76149
[12] Abels, H.; Weber, J., Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ., 21, 3477-3502 (2021) · Zbl 1490.76226
[13] Bedrossian, J.; Rodríguez, N.; Bertozzi, A. L., Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24, 1683-1714 (2011) · Zbl 1222.49038
[14] Bertozzi, A. L.; Esedoḡlu, S.; Gillette, A., Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16, 285-291 (2007) · Zbl 1279.94008
[15] Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 18, 225-259 (2001) · Zbl 1037.76062
[16] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 41-68 (2002) · Zbl 1057.76060
[17] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5 (1973), North-Holland Publishing Co./American Elsevier Publishing Co., Inc.: North-Holland Publishing Co./American Elsevier Publishing Co., Inc. Amsterdam-London/New York · Zbl 0252.47055
[18] Colli, P.; Krejčí, P.; Rocca, E.; Sprekels, J., Nonlinear evolution inclusions arising from phase change models, Czechoslov. Math. J., 57, 132, 1067-1098 (2007) · Zbl 1174.35021
[19] Davoli, E.; Scarpa, L.; Trussardi, L., Local asymptotics for nonlocal convective Cahn-Hilliard equations with \(W^{1 , 1}\) kernel and singular potential, J. Differ. Equ., 289, 35-58 (2021) · Zbl 1465.45014
[20] Davoli, E.; Scarpa, L.; Trussardi, L., Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239, 117-149 (2021) · Zbl 1456.76139
[21] Della Porta, F.; Giorgini, A.; Grasselli, M., The nonlocal Cahn-Hilliard-Hele-Shaw system with logarithmic potential, Nonlinearity, 31, 4851-4881 (2018) · Zbl 1395.35163
[22] Frigeri, S., Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., 26, 1955-1993 (2016) · Zbl 1346.76203
[23] Frigeri, S., On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 38, 647-687 (2021) · Zbl 1464.35179
[24] Frigeri, S.; Gal, C. G.; Grasselli, M., On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, J. Nonlinear Sci., 26, 847-893 (2016) · Zbl 1348.35171
[25] Frigeri, S.; Gal, C. G.; Grasselli, M., Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differ. Equ., 287, 295-328 (2021) · Zbl 1462.35077
[26] Frigeri, S.; Grasselli, M., Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials, Dyn. Partial Differ. Equ., 9, 273-304 (2012) · Zbl 1280.35089
[27] Gajewski, H.; Zacharias, K., On a nonlocal phase separation model, J. Math. Anal. Appl., 286, 11-31 (2003) · Zbl 1032.35078
[28] Gal, C. G.; Giorgini, A.; Grasselli, M., The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property, J. Differ. Equ., 263, 5253-5297 (2017) · Zbl 1400.35178
[29] Gal, C. G.; Giorgini, A.; Grasselli, M., The separation property for 2D Cahn-Hilliard equations: local, nonlocal and fractional energy cases, Discrete Contin. Dyn. Syst., 43, 2270-2304 (2023) · Zbl 1514.35039
[30] Gal, C. G.; Grasselli, M., Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 34, 145-179 (2014) · Zbl 1274.35399
[31] Gal, C. G.; Grasselli, M.; Wu, H., Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234, 1-56 (2019) · Zbl 1444.76001
[32] Galdi, G. P., An introduction to the Navier-Stokes initial-boundary value problem, (Fundamental Directions in Mathematical Fluid Mechanics. Fundamental Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech. (2000), Birkhäuser: Birkhäuser Basel), 1-70 · Zbl 1108.35133
[33] Giacomin, G.; Lebowitz, J. L., Exact macroscopic description of phase segregation in model alloys with long range interactions, Phys. Rev. Lett., 76, 1094-1097 (1996)
[34] Giacomin, G.; Lebowitz, J. L., Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits, J. Stat. Phys., 87, 37-61 (1997) · Zbl 0937.82037
[35] Giacomin, G.; Lebowitz, J. L., Phase segregation dynamics in particle systems with long range interactions II: Interface motion, SIAM J. Appl. Math., 58, 1707-1729 (1998) · Zbl 1015.82027
[36] Giga, M.-H.; Kirshtein, A.; Liu, C., Variational modeling and complex fluids, (Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), Springer: Springer Cham), 73-113
[37] Giorgini, A., Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differ. Equ., 60, Article 100 pp. (2021) · Zbl 1468.35134
[38] Giorgini, A., Existence and stability of strong solutions to the Abels-Garcke-Grün model in three dimensions, Interfaces Free Bound., 24, 565-608 (2022) · Zbl 1511.35277
[39] Giorgini, A.; Miranville, A.; Temam, R., Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51, 2535-2574 (2019) · Zbl 1419.35160
[40] Giorgini, A.; Temam, R., Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system, J. Math. Pures Appl. (9), 144, 194-249 (2020) · Zbl 1452.35151
[41] Grmela, M.; Klika, V.; Pavelka, M., Dynamic and renormalization-group extensions of the Landau theory of critical phenomena, Entropy, 22, Article 978 pp. (2020) · Zbl 1462.80002
[42] Grün, G.; Guillén-González, F.; Metzger, S., On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities, Commun. Comput. Phys., 19, 1473-1502 (2016) · Zbl 1373.76089
[43] Gurtin, M. E.; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 815-831 (1996) · Zbl 0857.76008
[44] He, J.; Wu, H., Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in 2D, J. Differ. Equ., 297, 47-80 (2021) · Zbl 1470.35362
[45] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., 63, 145-169 (2012) · Zbl 1295.76002
[46] Hemmerich, H., The Diffuse Interface Approach in Material Science (2003), Springer: Springer Berlin, Heidelberg · Zbl 1039.74001
[47] Kotschote, M.; Zacher, R., Strong solutions in the dynamical theory of compressible fluid mixtures, Math. Models Methods Appl. Sci., 25, 1217-1256 (2015) · Zbl 1329.76060
[48] Krejčí, P.; Rocca, E.; Sprekels, J., A nonlocal phase-field model with nonconstant specific heat, Interfaces Free Bound., 9, 285-306 (2007) · Zbl 1129.74035
[49] Londen, S.-O.; Petzeltová, H., Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst., Ser. S, 4, 653-670 (2011) · Zbl 1209.35022
[50] Londen, S.-O.; Petzeltová, H., Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., 379, 724-735 (2011) · Zbl 1221.35085
[51] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 454, 2617-2654 (1998) · Zbl 0927.76007
[52] Marcus, M.; Mizel, V. J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Ration. Mech. Anal., 45, 294-320 (1972) · Zbl 0236.46033
[53] Miranville, A.; Zelik, S., Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27, 545-582 (2004) · Zbl 1050.35113
[54] Poiatti, A., The 3D strict separation property for the nonlocal Cahn-Hilliard equation with singular potential (2022)
[55] Rowlinson, J. S., Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Stat. Phys., 20, 197-244 (1979) · Zbl 1245.82006
[56] Shokrpour Roudbari, M.; Şimşek, G.; van Brummelen, E. H.; van der Zee, K. G., Diffuse-interface two-phase flow models with different densities: a new quasi-incompressible form and a linear energy-stable method, Math. Models Methods Appl. Sci., 28, 733-770 (2018) · Zbl 1390.76047
[57] Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, vol. 49 (1997), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0870.35004
[58] Strauss, W. A., On continuity of functions with values in various Banach spaces, Pac. J. Math., 19, 543-551 (1966) · Zbl 0185.20103
[59] Xie, Y.; Wodo, O.; Ganapathysubramanian, B., A diffuse interface model for incompressible two-phase flow with large density ratios, (Advances in Computational Fluid-Structure Interaction and Flow Simulation. Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol. (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham), 203-215 · Zbl 1356.76388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.