×

A diffuse interface model for incompressible two-phase flow with large density ratios. (English) Zbl 1356.76388

Bazilevs, Yuri (ed.) et al., Advances in computational fluid-structure interaction and flow simulation. New methods and challenging computations. Based on the presentations at the conference, AFSI, Tokyo, Japan, March 19–21, 2014. Basel: Birkhäuser/Springer (ISBN 978-3-319-40825-5/hbk; 978-3-319-40827-9/ebook). Modeling and Simulation in Science, Engineering and Technology, 203-215 (2016).
Summary: In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid-fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn-Hilliard Navier-Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn-Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier-Stokes equation. These are integrated with standard streamline-upwind Petrov-Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.
For the entire collection see [Zbl 1356.76009].

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139–165 (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[2] Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335–354 (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[3] Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9 (4), 417–445 (1998) · Zbl 0930.35024 · doi:10.1017/S0956792598003520
[4] Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28 (2), 258–267 (1958) · doi:10.1063/1.1744102
[5] Ceniceros, H.D., Nós, R.L., Roma, A.M.: Three-dimensional, fully adaptive simulations of phase-field fluid models. J. Comput. Phys. 229 (17), 6135–6155 (2010) · Zbl 1425.76179 · doi:10.1016/j.jcp.2010.04.045
[6] Chang, Y.-C., Hou, T.Y., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124 (2), 449–464 (1996) · Zbl 0847.76048 · doi:10.1006/jcph.1996.0072
[7] Choi, H.G., Choi, H., Yoo, J.Y.: A fractional four-step finite element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equal-order element methods. Comput. Methods Appl. Mech. Eng. 143 (3), 333–348 (1997) · Zbl 0896.76036 · doi:10.1016/S0045-7825(96)01156-5
[8] Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226 (2), 2078–2095 (2007) · Zbl 1388.76403 · doi:10.1016/j.jcp.2007.06.028
[9] Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231 (17), 5788–5804 (2012) · Zbl 1277.76118 · doi:10.1016/j.jcp.2012.04.041
[10] Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (2), 423–456 (1999) · Zbl 0954.76063 · doi:10.1006/jcph.1998.6168
[11] Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (3), 435 (1977) · doi:10.1103/RevModPhys.49.435
[12] Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204 (2), 784–804 (2005) · Zbl 1329.76103 · doi:10.1016/j.jcp.2004.10.032
[13] Li, X., Lowengrub, J., Rätz, A., Voigt, A.: Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7 (1), 81 (2009) · Zbl 1178.35027 · doi:10.4310/CMS.2009.v7.n1.a4
[14] Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. London Ser. A 454 (1978), 2617–2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[15] Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/ Navier–Stokes model. Numer. Methods Partial Differ. Equ., 29 (2), 584–618 (2013) · Zbl 1364.76091 · doi:10.1002/num.21721
[16] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1), 12–49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[17] Prosperetti, A.: Motion of two superposed viscous fluids. Phys. Fluids 24 (7), 1217 (1981) · Zbl 0469.76035 · doi:10.1063/1.863522
[18] Simsek, G., van der Zee, K.G., van Brummelen, E.H.: Stable–time scheme for energy dissipative quasi–incompressible two–phase diffuse–interface flows. In: Book of Abstracts, European Conference on Numerical Mathematics and Advanced Applications p. 159 (2015)
[19] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169 (2), 708–759 (2001) · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[20] Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3d isoperimetric problem. J. Comput. Phys. 230 (15), 6037–6060 (2011) · Zbl 1416.65364 · doi:10.1016/j.jcp.2011.04.012
[21] Xie, Y., Wodo, O., Ganapathysubramanian, B.: A diffuse interface model for incompressible two-phase flows: stabilized FEM, large density ratios, and the 3d patterned substrate wetting problem. Comput. Fluids (submitted) doi: 10.1016/j.compfluid.2016.04.011 · Zbl 1390.76370
[22] Yue, P., Feng, J.J.: Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. E Spec. Top. 197 (1), 37–46 (2011) · doi:10.1140/epjst/e2011-01434-y
[23] Yue, P., Zhou, C., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219 (1), 47–67 (2006) · Zbl 1137.76318 · doi:10.1016/j.jcp.2006.03.016
[24] Yue, P., Zhou, C., Feng, J.J.: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010) · Zbl 1189.76074 · doi:10.1017/S0022112009992679
[25] Zhou, C., Yue, P., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: 3d phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229 (2), 498–511 (2010) · Zbl 1355.76037 · doi:10.1016/j.jcp.2009.09.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.