×

On the IAA version of the Doi-edwards model versus the K-BKZ rheological model for polymer fluids: a global existence result for shear flows with small initial data. (English) Zbl 1386.76013

Summary: This paper establishes the existence of smooth solutions for the Doi-Edwards rheological model of viscoelastic polymer fluids in shear flows. The problem turns out to be formally equivalent to a K-BKZ equation but with constitutive functions spanning beyond the usual mathematical framework. We prove, for small enough initial data, that the solution remains in the domain of hyperbolicity of the equation for all \(t\).

MSC:

76A10 Viscoelastic fluids
35Q35 PDEs in connection with fluid mechanics
82D60 Statistical mechanics of polymers

References:

[1] Aarts, A. C. T.; Van De Ven, A. A. F., Transient behaviour and stability points of the Poiseuille flow of a KBKZ-fluid, J. Eng. Math., 29, 371-392, (1995) · Zbl 0836.76031 · doi:10.1007/BF00042762
[2] Bae, H.; Trivisa, K., On the Doi model for the suspensions of rod-like molecules: Global-in-time existence, Commun. Math. Sci., 11, 831-850, (2013) · Zbl 1280.35085 · doi:10.4310/CMS.2013.v11.n3.a8
[3] Barrett, J. W.; Schwab, C.; Süli, E., Existence of global weak solutions for some polymeric flow models, Math. Models Methods Appl. Sci., 15, 1211-1289, (2011) · Zbl 1244.35101
[4] Barrett, J. W.; Süli, E., Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains, Math. Models Methods Appl. Sci., 21, 1211-1289, (2005) · Zbl 1244.35101
[5] Barrett, J. W.; Süli, E., Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models, Math. Models Methods Appl. Sci., 22, 1150024, (2006) · Zbl 1237.35127
[6] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theories, (1987), J. Wiley & Sons: J. Wiley & Sons, New-York
[7] Blanc, X.; Le Bris, C.; Lions, P. -L., From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164, 341-381, (2002) · Zbl 1028.74005 · doi:10.1007/s00205-002-0218-5
[8] Brandon, D.; Hrusa, W. J., Global existence of smooth shearing motions of a nonlinear viscoelastic fluid, J. Integral Equ. Appl., 2, 333-351, (1990) · Zbl 0827.76003 · doi:10.1216/jiea/1181075567
[9] Brandon, D., Global existence and asymptotic stability for a nonlinear integro-differential equation modeling heat flow, SIAM J. Math. Anal., 22, 72-106, (1991) · Zbl 0722.45008 · doi:10.1137/0522005
[10] Busuioc, A. V.; Ciuperca, I. S.; Iftimie, D.; Palade, L. I., The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation, J. Dyn. Differ. Equ., 26, 217-241, (2014) · Zbl 1298.76013 · doi:10.1007/s10884-014-9369-y
[11] Chupin, L., Fokker-Planck equation in bounded domain, Ann. Inst. Fourier, 60, 217-255, (2010) · Zbl 1200.35305 · doi:10.5802/aif.2521
[12] Ciuperca, I. S.; Heibig, A., (2015) · Zbl 1356.35254 · doi:10.1016/j.anihpc.2015.05.003
[13] Ciuperca, I. S.; Heibig, A.; Palade, L. I., Existence and uniqueness results for the Doi-Edwards polymer melt model: The case of the (full) nonlinear configurational probability density equation, Nonlinearity, 25, 991-1009, (2012) · Zbl 1236.35187 · doi:10.1088/0951-7715/25/4/991
[14] Ciuperca, I. S.; Palade, L. I., The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: Existence and uniqueness of solutions for arbitrary velocity gradients, Math. Models Methods Appl. Sci., 19, 2039-2064, (2009) · Zbl 1183.82099 · doi:10.1142/S0218202509004030
[15] Ciuperca, I. S.; Palade, L. I., On the existence and uniqueness of solutions of the configurational probability diffusion equation for the generalized rigid dumbbell polymer model, Dyn. Partial Differ. Equ., 7, 245-263, (2010) · Zbl 1221.35009 · doi:10.4310/DPDE.2010.v7.n3.a3
[16] Ciuperca, I. S.; Palade, L. I., Asymptotic behavior of the solution of the distribution diffusion equation for FENE dumbbell polymer model, Math. Modelling Nat. Phenom., 6, 84-97, (2011) · Zbl 1235.35035
[17] Constantin, P.; Masmoudi, N., Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D, Commun. Math. Phys., 278, 179-191, (2008) · Zbl 1147.35069 · doi:10.1007/s00220-007-0384-2
[18] De Gennes, P.-G., Scaling Concepts in Polymer Physics, (1979), Cornell University Press: Cornell University Press, Ithaca NJ and London
[19] Doi, M.; Edwards, S. F., Dynamics of concentrated polymer systems, Part 3.-The constitutive equation, J. Chem. Soc. Faraday Trans. II, 74, 1818-1832, (1978) · doi:10.1039/F29787401818
[20] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics, (1989), Oxford University Press: Oxford University Press, Oxford
[21] Degond, P.; Lemou, M.; Picasso, M., Viscoelastic fluid models derived from kinetic equations for polymers, SIAM J. Appl. Math., 62, 1501-1519, (2002) · Zbl 1047.76005 · doi:10.1137/S0036139900374404
[22] Engler, H., Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials, Arch. Ration. Mech. Anal., 113, 1-38, (1991) · Zbl 0723.45017 · doi:10.1007/BF00380814
[23] Engler, H., Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials, Arch. Ration. Mech. Anal., 130, 401, (1995) · Zbl 0832.45009 · doi:10.1007/BF00375145
[24] Eller, M. M.; Imanuvilev, O.; Leugering, G.; Triggiani, R.; Zhang, B., Control Theory of Partial Differential Equations, Gårding’s inequality on manifolds with boundary, 87-99, (2005), Chapman & Hall/CRC: Chapman & Hall/CRC, Boca Raton FL · Zbl 1066.93001 · doi:10.1201/9781420028317
[25] Gripenberg, G.; Londen, S.-O.; Staffans, O., Volterra Integral and Functional Equations, (1990), Cambridge University Press · Zbl 0695.45002
[26] Hrusa, W. J.; Renardy, M., A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal., 19, 257-269, (1988) · Zbl 0644.73041 · doi:10.1137/0519019
[27] Jourdain, B.; Le Bris, C.; Lelievre, T.; Otto, F., Long-time asymptotics of a multiscale model for polymeric fluid flows, Arch. Ration. Mech. Anal., 181, 97-148, (2006) · Zbl 1089.76006 · doi:10.1007/s00205-005-0411-4
[28] Kim, J. U., Global smooth solutions of the equations of motion of a nonlinear fluid with fading memory, Arch. Ration. Mech. Anal., 79, 97-130, (1982) · Zbl 0509.76006
[29] Le Bris, C.; Lions, P. -L., Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., 33, 1272-1317, (2008) · Zbl 1157.35301 · doi:10.1080/03605300801970952
[30] Lions, J.-L.; Magenes, E., Problèmes aux Limites Non-homogènes et Applications, (1968), Dunod: Dunod, Paris · Zbl 0165.10801
[31] Masmoudi, N., Well-posedness for the FENE dumbbell model of polymeric flows, Commun. Pure Appl. Math., 61, 1685-1714, (2008) · Zbl 1157.35088 · doi:10.1002/cpa.20252
[32] Masmoudi, N., Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Inventiones Math., 191, 427-500, (2013) · Zbl 1258.35160 · doi:10.1007/s00222-012-0399-y
[33] Öttinger, H.-C., Beyond Equilibrium Thermodynamics, (2006), Wiley
[34] Otto, F.; Tzavaras, A. E., Continuity of velocity gradients in suspensions of rod-like molecules, Commun. Math. Phys., 277, 729-758, (2008) · Zbl 1158.76051 · doi:10.1007/s00220-007-0373-5
[35] Palade, L. I., On slow flows of the full nonlinear Doi-Edwards polymer model, Z. Angew. Math. Phys. ZAMP, 65, 139-148, (2014) · Zbl 1432.82026 · doi:10.1007/s00033-013-0358-5
[36] Palierne, J. F., Rheothermodynamics of the Doi-Edwards reptation model, Phys. Rev. Lett., 93, 136001-4, (2004)
[37] Prüss, J., Evolutionary Integral Equations and Applications, (2012), Modern Birkhaüser Classics, Springer: Modern Birkhaüser Classics, Springer, New York NY · Zbl 1258.45008
[38] Renardy, M.; Hrusa, W. J.; Nohel, J. A., Mathematical Problems in Viscoelasticity, (1987), Longman Scientific & Technical, Harlow Essex: Longman Scientific & Technical, Harlow Essex, England · Zbl 0719.73013
[39] Renardy, M., Mathematical Analysis of Viscoelastic Flows, (2000), SIAM · Zbl 0956.76001
[40] Staffans, O. J., On a nonlinear hyperbolic Volterra equation, SIAM J. Math. Anal., 11, 793-812, (1980) · Zbl 0464.45010 · doi:10.1137/0511071
[41] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, (1970), Princeton University Press: Princeton University Press, Princeton NJ · Zbl 0207.13501
[42] Taylor, M. E., Pseudodifferential Operators, (1981), Princeton University Press: Princeton University Press, Princeton NJ · Zbl 0453.47026
[43] Zhang, H.; Zhang, P., Local existence for the FENE-dumbbell model of polymeric fluids, Arch. Ration. Mech. Anal., 181, 373-400, (2006) · Zbl 1095.76004 · doi:10.1007/s00205-006-0416-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.