×

Fokker-Planck equation in bounded domain. (English) Zbl 1200.35305

This paper is concerned with the existence and uniqueness of a solution to the well-studied linear Fokker-Planck equation in a bounded domain. The author nicely presents tools from differential geometry as well as lemmas used in the main proof of the theorem. He then gives the precise statement of the main part before providing the proof of the theorem which consists of two parts, the existence and the uniquneness. The last part of the paper provides an application to fluid mechanics with numerical results. The article is well-referenced and is a welcome addition to the literature on these type of linear equations which occur in many application in physics and finance.

MSC:

35Q84 Fokker-Planck equations
35Q35 PDEs in connection with fluid mechanics
35J25 Boundary value problems for second-order elliptic equations
35R60 PDEs with randomness, stochastic partial differential equations
76A05 Non-Newtonian fluids
82D60 Statistical mechanics of polymers

References:

[1] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On convex Sobolev Inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Communications in Partial Differential Equations, 26, 1, 43-100 (2001) · Zbl 0982.35113 · doi:10.1081/PDE-100002246
[2] Boyer, Franck, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18, 8, 891-934 (2005) · Zbl 1212.35049
[3] Boyer, Franck; Fabrie, Pierre, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, 52 (2006) · Zbl 1105.76003
[4] Brascamp, Herm Jan; Lieb, Elliott H., On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22, 4, 366-389 (1976) · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[5] Chupin, L., The FENE model for viscoelastic thin film flows: Justification of new models and applications (2008)
[6] Degond, P.; Lemou, M.; Picasso, M., Dispersive transport equations and multiscale models (Minneapolis, MN, 2000), 136, 77-89 (2004) · Zbl 1145.76315
[7] Droniou, J., Non-coercive linear elliptic problems, Potential Anal., 17, 2, 181-203 (2002) · Zbl 1161.35362 · doi:10.1023/A:1015709329011
[8] Droniou, J.; Vazquez, J.-L., Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var., 34, 4, 413-434 (2009) · Zbl 1167.35342 · doi:10.1007/s00526-008-0189-y
[9] Escande, DF; Sattin, F., When Can the Fokker-Planck Equation Describe Anomalous or Chaotic Transport?, Physical Review Letters, 99, 18 (2007) · doi:10.1103/PhysRevLett.99.185005
[10] Ghosh, I.; McKinley, G. H.; Brown, R. A.; Armstrong, R. C., Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions, Journal of Rheology, 45 (2001) · doi:10.1122/1.1357822
[11] Guíñez, J.; Rueda, A. D., Steady states for a Fokker-Planck equation on \(S_n\), Acta Math. Hungar., 94, 3, 211-221 (2002) · Zbl 1007.58013 · doi:10.1023/A:1015675125024
[12] Heinonen, Juha; Kilpeläinen, Tero; Martio, Olli, Nonlinear potential theory of degenerate elliptic equations (2006) · Zbl 1115.31001
[13] Helffer, B.; Nier, F., Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, 1862 (2005) · Zbl 1072.35006
[14] Hérau, Frédéric; Nier, Francis, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171, 2, 151-218 (2004) · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3
[15] Jourdain, Benjamin; Lelièvre, Tony; Le Bris, Claude, Existence of solution for a micro-macro model of polymeric fluid: the FENE model, J. Funct. Anal., 209, 1, 162-193 (2004) · Zbl 1047.76004 · doi:10.1016/S0022-1236(03)00183-6
[16] Leray, J.; Schauder, J., Topologie et équations fonctionnelles, Ann. Sci. Éc. Norm. Supér., III. Ser., 51, 45-78 (1934) · Zbl 0009.07301
[17] Lozinski, A.; Chauvière, C., A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model, J. Comput. Phys., 189, 2, 607-625 (2003) · Zbl 1060.82525 · doi:10.1016/S0021-9991(03)00248-1
[18] Masmoudi, N., Well posedness for the FENE dumbbell model of polymeric flows (2007) · Zbl 1157.35088
[19] Métivier, Guy, Journées: Équations aux Dérivées Partielles de Rennes (1975), 215-249. Astérisque, No. 34-35 (1976) · Zbl 0329.35047
[20] Noarov, A. I., Generalized solvability of the stationary Fokker-Planck equation, Differ. Uravn., 43, 6, 813-819, 863 (2007) · Zbl 1149.35020
[21] Öttinger, Hans Christian, Stochastic processes in polymeric fluids (1996) · Zbl 0995.60098
[22] Sattin, F., Fick’s law and Fokker-Planck equation in inhomogeneous environments, Phys. Lett. A, 372, 22, 3941-3945 (2008) · Zbl 1220.82088 · doi:10.1016/j.physleta.2008.03.014
[23] Stredulinsky, Edward W., Weighted inequalities and degenerate elliptic partial differential equations, 1074 (1984) · Zbl 0541.35001
[24] Triebel, Hans, Interpolation theory, function spaces, differential operators (1995) · Zbl 0830.46028
[25] Turesson, Bengt Ove, Nonlinear potential theory and weighted Sobolev spaces, 1736 (2000) · Zbl 0949.31006
[26] Zeeman, E. C., Stability of dynamical systems, Nonlinearity, 1, 1, 115-155 (1988) · Zbl 0643.58005 · doi:10.1088/0951-7715/1/1/005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.