×

Edge-minimum saturated \(k\)-planar drawings. (English) Zbl 1542.05124

Summary: For a class \(\mathcal{D}\) of drawings of loopless (multi-)graphs in the plane, a drawing \(D \in \mathcal{D}\) is saturated when the addition of any edge to \(D\) results in \(D^\prime \notin \mathcal{D} \) – this is analogous to saturated graphs in a graph class as introduced by P. Turán [Mat. Fiz. Lapok 48, 436–452 (1941; Zbl 0026.26903; JFM 67.0732.03)] and P. Erdős et al. [Am. Math. Mon. 71, 1107–1110 (1964; Zbl 0126.39401)]. We focus on \(k\)-planar drawings, that is, graphs drawn in the plane where each edge is crossed at most \(k\) times, and the classes \(\mathcal{D}\) of all \(k\)-planar drawings obeying a number of restrictions, such as having no crossing incident edges, no pair of edges crossing more than once, or no edge crossing itself. While saturated \(k\)-planar drawings are the focus of several prior works, tight bounds on how sparse these can be are not well understood. We establish a generic framework to determine the minimum number of edges among all \(n\)-vertex saturated \(k\)-planar drawings in many natural classes. For example, when incident crossings, multicrossings, and selfcrossings are all allowed, the sparsest \(n\)-vertex saturated \(k\)-planar drawings have \(\frac{2}{k - ( k \bmod 2 )} ( n - 1 )\) edges for any \(k \geq 4\), while if all that is forbidden, the sparsest such drawings have \(\frac{2 ( k + 1 )}{k ( k - 1 )} ( n - 1 )\) edges for any \(k \geq 6\).
© 2024 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

MSC:

05C62 Graph representations (geometric and intersection representations, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory

References:

[1] E.Ackerman, On topological graphs with at most four crossings per edge, Comput. Geom. 85 (2019), 101574. https://doi.org/10.1016/j.comgeo.2019.101574 · Zbl 1439.05163 · doi:10.1016/j.comgeo.2019.101574
[2] A.Arroyo, M.Derka, and I.Parada, Extending simple drawings, Proc. 2th Int. Symp. Graph Drawing and Network Visualization (GD), LNCS 11904, Springer, 2019, pp. 230-243. https://doi.org/10.1007/978-3-030-35802-0_18 · Zbl 1542.68121 · doi:10.1007/978-3-030-35802-0_18
[3] A.Arroyo, F.Klute, I.Parada, R.Seidel, B.Vogtenhuber, and T.Wiedera, Inserting one edge into a simple drawing is hard, Discret. Computat. Geom. 69 (2023), 745-770. https://doi.org/10.1007/s00454-022-00394-9 · Zbl 07661297 · doi:10.1007/s00454-022-00394-9
[4] C.Auer, F.Brandenburg, A.Gleißner, and K.Hanauer, On sparse maximal 2‐planar graphs, Proc. 20th Int. Symp. on Graph Drawing (GD), LNCS 7704, Springer, 2012, pp. 555-556. https://doi.org/10.1007/978-3-642-36763-2_50 · doi:10.1007/978-3-642-36763-2_50
[5] S. W.Bae, J.‐F.Baffier, J.Chun, P.Eades, K.Eickmeyer, L.Grilli, S.‐H.Hong, M.Korman, F.Montecchiani, I.Rutter, and C. D.Tóth, Gap‐planar graphs, Theor. Comput. Sci. 745 (2018), 36-52. https://doi.org/10.1016/j.tcs.2018.05.029 · Zbl 1400.68151 · doi:10.1016/j.tcs.2018.05.029
[6] M.Balko, R.Fulek, and J.Kynčl, Crossing numbers and combinatorial characterization of monotone drawings of \(K_n\), Discret. Comput. Geom. 53 (2015), no. 1, 107-143. https://doi.org/10.1007/s00454-014-9644-z · Zbl 1307.05058 · doi:10.1007/s00454-014-9644-z
[7] J.Barát and G.Tóth, Improvements on the density of maximal 1‐planar graphs, J. Graph Theory. 88 (2018), no. 1, 101-109. https://doi.org/10.1002/jgt.22187 · Zbl 1391.05151 · doi:10.1002/jgt.22187
[8] J.Barát and G.Tóth, Saturated 2‐planar drawings with few edges. Ars Math Contemp. 24 (2024), no. 1.05, 5. https://doi.org/10.26493/1855-3974.2805.b49 · Zbl 1539.05105 · doi:10.26493/1855-3974.2805.b49
[9] M. A.Bekos, M.Kaufmann, and C. N.Raftopoulou, On optimal 2‐ and 3‐planar graphs, Proc. 33rd Int. Symp. on Computational Geometry (SoCG), LIPIcs 77, Schloss Dagstuhl‐Leibniz‐Zentrum für Informatik, 2017, pp. 16:1-16:16. https://doi.org/10.4230/LIPIcs.SoCG.2017.16 · Zbl 1435.05057 · doi:10.4230/LIPIcs.SoCG.2017.16
[10] F.Brandenburg, D.Eppstein, A.Gleißner, M. T.Goodrich, K.Hanauer, and J.Reislhuber, On the density of maximal 1‐planar graphs, Proc. 20th Int. Symp. on Graph Drawing (GD), LNCS 7704, Springer, 2012, pp. 327-338. https://doi.org/10.1007/978-3-642-36763-2_29 · Zbl 1377.68165 · doi:10.1007/978-3-642-36763-2_29
[11] V.Capoyleas and J.Pach, A Turán‐type theorem on chords of a convex polygon, J. Combin. Theory Ser. B. 56 (1992), no. 1, 9-15. https://doi.org/10.1016/0095-8956(92)90003-G · Zbl 0783.05032 · doi:10.1016/0095-8956(92)90003-G
[12] S.Chaplick, M.Kryven, G.Liotta, A.Löffler, and A.Wolff, Beyond outerplanarity, Proc. 25th Int. Symp. on Graph Drawing and Network Visualization (GD), LNCS 10692, Springer, 2017, pp. 546-559. https://doi.org/10.1007/978-3-319-73915-1_42 · Zbl 1503.68213 · doi:10.1007/978-3-319-73915-1_42
[13] S.Chaplick, F.Klute, I.Parada, J.Rollin, and T.Ueckerdt, Edge‐minimum saturated k‐planar drawings, Proc. 29th Int. Symp. on Graph Drawing and Network Visualization (GD), LNCS 12868, Springer, 2021, pp. 3-17. https://doi.org/10.1007/978-3-030-92931-2_1 · Zbl 07551730 · doi:10.1007/978-3-030-92931-2_1
[14] W.Didimo, G.Liotta, and F.Montecchiani, A survey on graph drawing beyond planarity, ACM Comput. Surv. 52 (2019), no. 1, 4:1-4:37. https://doi.org/10.1145/3301281 · doi:10.1145/3301281
[15] A. W. M.Dress, J. H.Koolen, and V.Moulton, On line arrangements in the hyperbolic plane, Eur. J. Comb. 23 (2002), no. 5, 549-557. https://doi.org/10.1006/eujc.2002.0582 · Zbl 1023.52007 · doi:10.1006/eujc.2002.0582
[16] P.Eades, S.Hong, N.Katoh, G.Liotta, P.Schweitzer, and Y.Suzuki, A linear time algorithm for testing maximal 1‐planarity of graphs with a rotation system, Theor. Comput. Sci. 513 (2013), 65-76. https://doi.org/10.1016/j.tcs.2013.09.029 · Zbl 1407.68354 · doi:10.1016/j.tcs.2013.09.029
[17] P.Erdős, A.Hajnal, and J. W.Moon, A problem in graph theory, Am. Math. Mon. 71 (1964), no. 10, 1107-1110. https://doi.org/10.2307/2311408 · Zbl 0126.39401 · doi:10.2307/2311408
[18] J. R.Faudree, R. J.Faudree, and J. R.Schmitt, A survey of minimum saturated graphs, Electron. J. Comb. DS191000 (2011), 36. https://doi.org/10.37236/41 · Zbl 1222.05113 · doi:10.37236/41
[19] S.Felsner, M.Hoffmann, K.Knorr, and I.Parada, On the maximum number of crossings in star‐simple drawings of \(\text{K}_{\text{n} }\) with no empty lens, Proc. 28th Int. Symp. on Graph Drawing and Network Visualization (GD), LNCS 12590, Springer, 2020, pp. 382-389. https://doi.org/10.1007/978-3-030-68766-3_30 · Zbl 07436632 · doi:10.1007/978-3-030-68766-3_30
[20] J.Fox, J.Pach, and A.Suk, On the number of edges of separated multigraphs, Proc. 29th Int. Symp. on Graph Drawing and Network Visualization (GD), LNCS 12868, Springer, 2021, pp. 223-227. https://doi.org/10.1007/978-3-030-92931-2_16 · Zbl 07551745 · doi:10.1007/978-3-030-92931-2_16
[21] P.Hajnal, A.Igamberdiev, G.Rote, and A.Schulz, Saturated simple and 2‐simple topological graphs with few edges, J. Graph Algorithms Appl. 22 (2018), no. 1, 117-138. https://doi.org/10.7155/jgaa.00460 · Zbl 1377.05039 · doi:10.7155/jgaa.00460
[22] M.Hoffmann and M. M.Reddy, The number of edges in maximal 2‐planar graphs, Proc. 39th Int. Symp. on Computational Geometry (SoCG), LIPIcs 258, Schloss Dagstuhl‐Leibniz‐Zentrum fü r Informatik, 2023, pp. 39:1-39:15. https://doi.org/10.4230/LIPIcs.SoCG.2023.39 · doi:10.4230/LIPIcs.SoCG.2023.39
[23] S.‐H.Hong (ed.) and T.Tokuyama (ed.) (eds.) Beyond planar graphs: communications of NII Shonan meetings, Springer, 2020. https://doi.org/10.1007/978-981-15-6533-5 · Zbl 1465.68020 · doi:10.1007/978-981-15-6533-5
[24] S.‐H.Hong, M.Kaufmann, S. G.Kobourov, and J.Pach, Beyond‐planar graphs: algorithmics and combinatorics (Dagstuhl seminar 16452), Dagstuhl Reports. 6 (2017), no. 11, 35-62. https://doi.org/10.4230/DagRep.6.11.35 · doi:10.4230/DagRep.6.11.35
[25] M.Kaufmann, J.Pach, G.Tóth, and T.Ueckerdt, The number of crossings in multigraphs with no empty lens, Proc. 26th Int. Symp. on Graph Drawing and Network Visualization (GD), LNCS 11282, Springer, 2018, pp. 242-254. https://doi.org/10.1007/978-3-030-04414-5_17 · Zbl 1519.68194 · doi:10.1007/978-3-030-04414-5_17
[26] P.Keevash, Hypergraph Turán problems, Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Ser., Cambridge University Press, 2011, pp. 83-140. https://doi.org/10.1017/CBO9781139004114.004 · doi:10.1017/CBO9781139004114.004
[27] S. G.Kobourov, G.Liotta, and F.Montecchiani, An annotated bibliography on 1‐planarity, Comput. Sci. Rev. 25 (2017), 49-67. https://doi.org/10.1016/j.cosrev.2017.06.002 · Zbl 1398.68402 · doi:10.1016/j.cosrev.2017.06.002
[28] J.Kynčl, J.Pach, R.Radoičic, and G.Tóth, Saturated simple and \(k\)‐simple topological graphs. Comput. Geom. 48 (2015), no. 4, 295-310. https://doi.org/10.1016/j.comgeo.2014.10.008 · Zbl 1312.05040 · doi:10.1016/j.comgeo.2014.10.008
[29] T.Nakamigawa, A generalization of diagonal flips in a convex polygon, Theor. Comput. Sci. 235 (2000), no. 2, 271-282. https://doi.org/10.1016/S0304-3975(99)00199-1 · Zbl 0938.68880 · doi:10.1016/S0304-3975(99)00199-1
[30] J.Pach, R.Radoičic, G.Tardos, and G.Tóth, Improving the crossing lemma by finding more crossings in sparse graphs, Discret. Comput. Geom. 36 (2006), no. 4, 527-552. https://doi.org/10.1007/s00454-006-1264-9 · Zbl 1104.05022 · doi:10.1007/s00454-006-1264-9
[31] J.Pach and G.Tóth, Graphs drawn with few crossings per edge, Combinatorica. 17 (1997), no. 3, 427-439. https://doi.org/10.1007/BF01215922 · Zbl 0902.05017 · doi:10.1007/BF01215922
[32] J.Pach and G.Tóth, A crossing lemma for multigraphs, Discret. Comput. Geom. 63 (2020), no. 4, 918-933. https://doi.org/10.1007/s00454-018-00052-z · Zbl 1446.05026 · doi:10.1007/s00454-018-00052-z
[33] M.Schaefer, The graph crossing number and its variants: a survey, Electron. J. Comb. DS21 (2013), DS 21‐Apr. Version 6, May 21, 2021. https://doi.org/10.37236/2713 · Zbl 1267.05180 · doi:10.37236/2713
[34] A.Sidorenko, What we know and what we do not know about Turán numbers, Graphs Comb. 11 (1995), no. 2, 179-199. https://doi.org/10.1007/BF01929486 · Zbl 0839.05050 · doi:10.1007/BF01929486
[35] A.Suk and B.Walczak, New bounds on the maximum number of edges in \(k\)‐quasi‐planar graphs. Comput. Geom. 50 (2015), 24-33. https://doi.org/10.1016/j.comgeo.2015.06.001 · Zbl 1328.05056 · doi:10.1016/j.comgeo.2015.06.001
[36] P.Turán, Eine extremalaufgabe aus der graphentheorie, Mat. Fiz. Lapok. 48 (1941), 436-452. (In Hungarian, German summary). · Zbl 0026.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.