×

Sums of linear transformations in higher dimensions. (English) Zbl 1454.11024

Q. J. Math. 70, No. 3, 965-984 (2019); erratum ibid. 71, No. 4, 1169 (2020).
Summary: In this paper, we prove the following two results. Let \(d\) be a natural number and \(q\), \(s\) be co-prime integers such that \(1<\mathit{qs}<|q|\). Then there exists a constant \(\delta>0\) depending only on \(q\), \(s\) and \(d\) such that for any finite subset \(A\) of \(\mathbb{R}^d\) that is not contained in a translate of a hyperplane, we have \[ |q\cdot A+s\cdot A|\geq(|q|+|s|+2d-2)|A|-O_{q,s,d}(|A|^{1-\delta}). \] The main term in this bound is sharp and improves upon an earlier result of A. Balog and G. Shakan [North-West. Eur. J. Math. 1, 57–67 (2015; Zbl 1397.11017)]. Secondly, let \(\mathcal{L}\in\operatorname{GL}_2(\mathbb{R})\) be a linear transformation such that \(\mathcal{L}\) does not have any invariant one-dimensional subspace of \(\mathbb{R}^2\). Then, for all finite subsets \(A\) of \(\mathbb{R}^2\), we have \[ |A+\mathcal{L}(A)|\geq 4|A|-O(|A|^{1-\delta}), \] for some absolute constant \(\delta >0\). The main term in this result is sharp as well.

MSC:

11B13 Additive bases, including sumsets
11B30 Arithmetic combinatorics; higher degree uniformity
11P70 Inverse problems of additive number theory, including sumsets

Citations:

Zbl 1397.11017

References:

[1] Balog A.; Shakan G., On the sum of dilations of a set, 164, 153-162 (2014) · Zbl 1364.11020 · doi:10.4064/aa164-2-5
[2] Balog A.; Shakan G., Sum of dilates in vector spaces, 1, 46-54 (2015) · Zbl 1397.11017
[3] Bukh B., Sums of dilates, 17, 627-639 (2008) · Zbl 1191.11007 · doi:10.1017/S096354830800919X
[4] Cilleruelo J.; Hamidoune Y. O.; Serra O., On sums of dilates, 18, 871-880 (2009) · Zbl 1200.11007 · doi:10.1017/S0963548309990307
[5] Cilleruelo J.; Silva M.; Vinuesa C., A sumset problem, 2, 79-89 (2010) · Zbl 1245.11029
[6] Du S.; Cao H.; Sun Z., On a sumset problem for integers, 21, 25 (2014) · Zbl 1308.11010
[7] Freiman G. A.
[8] Green B.; Ruzsa I. Z., Freiman’s theorem in an arbitrary abelian group, 75, 163-175 (2007) · Zbl 1133.11058 · doi:10.1112/jlms/jdl021
[9] Grynkiewicz D.; Serra O., Properties of two-dimensional sets with small sumset, 117, 164-188 (2010) · Zbl 1205.11017 · doi:10.1016/j.jcta.2009.06.001
[10] Hamidoune Y. O.; Rué J., A lower bound for the size of a Minkowski sum of dilates, 20, 249-256 (2011) · Zbl 1231.11013 · doi:10.1017/S0963548310000520
[11] Konyagin S.; Łaba I., Distance sets of well-distributed planar sets for polygonal norms, 152, 157-179 (2006) · Zbl 1127.52021 · doi:10.1007/BF02771981
[12] Ljujić Z., A lower bound for the size of a sum of dilates, 5, 31-51 (2013) · Zbl 1320.11007
[13] Nathanson M. B., Inverse problems for linear forms over finite sets of integers, 23, 151-165 (2008) · Zbl 1163.11067
[14] Plagne A., Sums of dilates in groups of prime order, 20, 867-873 (2011) · Zbl 1272.11040 · doi:10.1017/S0963548311000447
[15] Pontiveros G. F., Sums of dilates in \(Z_p, 22, 282-293 (2013)\) · Zbl 1332.11008 · doi:10.1017/S0963548312000466
[16] Ruzsa I. Z., Sum of sets in several dimensions, 14, 485-490 (1994) · Zbl 0815.11012 · doi:10.1007/BF01302969
[17] Ruzsa I. Z.; Chudnovsky D. V.; Chudnovsky G. V.; Nathanson M. B., 281-293 (1996)
[18] Sanders T., Appendix to ‘Roth’s theorem on progressions revisited’, by J. Bourgain, 104, 193-206 (2008) · Zbl 1222.11014 · doi:10.1007/s11854-008-0021-9
[19] Sanders T., On the Bogolyubov-Ruzsa lemma, Anal, 5, 627-655 (2012) · Zbl 1320.11009
[20] Sanders T., The structure theory of set addition revisited, 50, 93-127 (2013) · Zbl 1337.11014 · doi:10.1090/bull/2013-50-01
[21] Schoen T., Near optimal bounds in Freiman’s theorem, 158, 1-12 (2011) · Zbl 1242.11074 · doi:10.1215/00127094-1276283
[22] Shakan G., Sum of many dilates, 25, 460-469 (2016) · Zbl 1372.11033 · doi:10.1017/S0963548315000164
[23] Tao T.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.