×

Bright-dark rogue wave transition in coupled ab system via the physics-informed neural networks method. (English) Zbl 07882862

Summary: Physics-informed neural networks (PINNs) can be used not only to predict the solutions of nonlinear partial differential equations, but also to discover the dynamic characteristics and phase transitions of rogue waves in nonlinear systems. Based on improved PINNs, we predict bright-dark one-soliton, two-soliton, two-soliton molecule and rogue wave solutions in a coupled AB system. We find that using only a small number of dynamic evolutionary rogue wave solutions as training data, we can find the phase transition boundary that can distinguish bright and dark rogue waves, and realize the mutual prediction between different rogue wave structures. The results show that the improved algorithm has high prediction accuracy, which provides a promising general technique for discovering and predicting new rogue structures in other parametric coupled systems.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
68T07 Artificial neural networks and deep learning
68Q32 Computational learning theory
35C08 Soliton solutions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35R02 PDEs on graphs and networks (ramified or polygonal spaces)

Software:

DiffSharp; GradNorm
Full Text: DOI

References:

[1] 10.1038/s41746-019-0193-y · doi:10.1038/s41746-019-0193-y
[2] ; Álvarez, Mauricio; Luengo, David; Lawrence, Neil D., Latent force models, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, 9, 2009
[3] 10.1016/j.neucom.2024.127419 · doi:10.1016/j.neucom.2024.127419
[4] 10.1007/s11071-021-07146-z · doi:10.1007/s11071-021-07146-z
[5] 10.1103/PhysRevLett.109.044102 · doi:10.1103/PhysRevLett.109.044102
[6] ; Baydin, Atılım Güneş; Pearlmutter, Barak A.; Radul, Alexey Andreyevich; Siskind, Jeffrey Mark, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, 153, 2017 · Zbl 06982909
[7] ; Bengio, Yoshua, Deep learning of representations for unsupervised and transfer learning, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 17, 2012
[8] ; Berger, Alan; Scott, Ridgway; Strang, Gilbert, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X, 295, 1972 · Zbl 0266.73050
[9] 10.1017/S0956792520000169 · Zbl 1538.68040 · doi:10.1017/S0956792520000169
[10] ; Chen, Zhao; Badrinarayanan, Vijay; Lee, Chen-Yu; Rabinovich, Andrew, Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks, Proceedings of the 35th International Conference on Machine Learning, 794, 2018
[11] 10.1201/9781003143376 · doi:10.1201/9781003143376
[12] 10.1145/3447548.3467449 · doi:10.1145/3447548.3467449
[13] 10.1093/imanum/drac085 · doi:10.1093/imanum/drac085
[14] 10.1080/17499518.2021.1971251 · doi:10.1080/17499518.2021.1971251
[15] 10.1109/ICMLA.2017.00-37 · doi:10.1109/ICMLA.2017.00-37
[16] ; Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C., Solitons and nonlinear wave equations, 1982 · Zbl 0496.35001
[17] 10.2352/ISSN.2470-1173.2016.19.COIMG-149 · doi:10.2352/ISSN.2470-1173.2016.19.COIMG-149
[18] ; Franceschi, Luca; Frasconi, Paolo; Salzo, Saverio; Grazzi, Riccardo; Pontil, Massimiliano, Bilevel programming for hyperparameter optimization and meta-learning, Proceedings of the 35th International Conference on Machine Learning, 1568, 2018
[19] 10.1098/rspa.1979.0084 · Zbl 0423.76016 · doi:10.1098/rspa.1979.0084
[20] 10.1109/LPT.2022.3143127 · doi:10.1109/LPT.2022.3143127
[21] 10.1109/CVPR.2016.90 · doi:10.1109/CVPR.2016.90
[22] 10.3389/fcvm.2021.768419 · doi:10.3389/fcvm.2021.768419
[23] 10.1126/science.1127647 · Zbl 1226.68083 · doi:10.1126/science.1127647
[24] 10.1137/21M1447039 · Zbl 1498.65183 · doi:10.1137/21M1447039
[25] 10.4208/cicp.oa-2020-0164 · doi:10.4208/cicp.oa-2020-0164
[26] 10.1016/j.jcp.2019.109136 · Zbl 1453.68165 · doi:10.1016/j.jcp.2019.109136
[27] 10.1016/j.cma.2020.113028 · Zbl 1442.92002 · doi:10.1016/j.cma.2020.113028
[28] 10.1016/j.oceaneng.2022.110775 · doi:10.1016/j.oceaneng.2022.110775
[29] 10.1002/lpor.202100483 · doi:10.1002/lpor.202100483
[30] 10.1088/0305-4470/28/11/024 · Zbl 0830.35128 · doi:10.1088/0305-4470/28/11/024
[31] 10.1038/s42254-021-00314-5 · doi:10.1038/s42254-021-00314-5
[32] 10.1016/j.cma.2020.113547 · Zbl 1506.68105 · doi:10.1016/j.cma.2020.113547
[33] 10.1016/j.ijheatmasstransfer.2022.123809 · doi:10.1016/j.ijheatmasstransfer.2022.123809
[34] 10.1109/72.712178 · doi:10.1109/72.712178
[35] 10.1109/72.870037 · doi:10.1109/72.870037
[36] 10.1007/s00521-012-0858-9 · doi:10.1007/s00521-012-0858-9
[37] 10.1145/3648506 · doi:10.1145/3648506
[38] 10.1016/j.jcp.2022.111053 · Zbl 1515.65264 · doi:10.1016/j.jcp.2022.111053
[39] 10.1016/0045-7949(80)90149-2 · Zbl 0427.73077 · doi:10.1016/0045-7949(80)90149-2
[40] 10.1016/j.cma.2019.112789 · Zbl 1442.76092 · doi:10.1016/j.cma.2019.112789
[41] 10.1016/j.jcp.2022.111722 · Zbl 07640528 · doi:10.1016/j.jcp.2022.111722
[42] 10.1016/j.jcp.2021.110361 · Zbl 07505956 · doi:10.1016/j.jcp.2021.110361
[43] 10.1016/j.cma.2020.113250 · Zbl 1506.65181 · doi:10.1016/j.cma.2020.113250
[44] 10.1080/03091929608213634 · Zbl 1181.76072 · doi:10.1080/03091929608213634
[45] 10.1098/rspa.1981.0130 · Zbl 0481.76119 · doi:10.1098/rspa.1981.0130
[46] 10.1007/s10444-023-10065-9 · Zbl 07726220 · doi:10.1007/s10444-023-10065-9
[47] 10.1111/mice.12685 · doi:10.1111/mice.12685
[48] 10.3390/electronics10162029 · doi:10.3390/electronics10162029
[49] 10.1137/18M1229845 · Zbl 1420.35459 · doi:10.1137/18M1229845
[50] 10.1016/j.jcp.2022.111121 · Zbl 07527733 · doi:10.1016/j.jcp.2022.111121
[51] 10.1016/j.jcp.2022.111902 · Zbl 07652802 · doi:10.1016/j.jcp.2022.111902
[52] 10.1016/j.jcp.2018.10.045 · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[53] 10.1016/j.bdr.2020.100178 · doi:10.1016/j.bdr.2020.100178
[54] 10.1007/s11063-004-0637-4 · doi:10.1007/s11063-004-0637-4
[55] 10.1109/MSP.2021.3118904 · doi:10.1109/MSP.2021.3118904
[56] 10.1016/j.jcp.2021.110683 · Zbl 07516435 · doi:10.1016/j.jcp.2021.110683
[57] 10.1038/nature16961 · doi:10.1038/nature16961
[58] 10.1016/j.jcp.2018.08.029 · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[59] ; Sitzmann, Vincent; Martel, Julien; Bergman, Alexander; Lindell, David; Wetzstein, Gordon, Implicit neural representations with periodic activation functions, Proceedings of the 34th International Conference on Neural Information Processing Systems, 7462, 2020
[60] 10.1609/aaai.v31i1.10934 · doi:10.1609/aaai.v31i1.10934
[61] 10.1111/1467-9590.00401 · Zbl 1114.76315 · doi:10.1111/1467-9590.00401
[62] 10.1109/TKDE.2021.3079836 · doi:10.1109/TKDE.2021.3079836
[63] 10.1140/epjp/i2015-15199-8 · doi:10.1140/epjp/i2015-15199-8
[64] 10.1137/20M1318043 · Zbl 1530.68232 · doi:10.1137/20M1318043
[65] ; Wilson, Andrew G.; Izmailov, Pavel, Bayesian deep learning and a probabilistic perspective of generalization, Proceedings of the 34th International Conference on Neural Information Processing Systems, 4697, 2020
[66] 10.1016/j.scitotenv.2020.141220 · doi:10.1016/j.scitotenv.2020.141220
[67] 10.1063/1.4931708 · Zbl 1374.35391 · doi:10.1063/1.4931708
[68] 10.1016/j.chaos.2021.111393 · Zbl 1496.35372 · doi:10.1016/j.chaos.2021.111393
[69] 10.1007/s11071-020-05794-1 · Zbl 1516.76093 · doi:10.1007/s11071-020-05794-1
[70] ; Xu, Jingyi; Zhang, Zilu; Friedman, Tal; Liang, Yitao; Broeck, Guy, A semantic loss function for deep learning with symbolic knowledge, Proceedings of the 35th International Conference on Machine Learning, 5502, 2018
[71] 10.1016/j.wavemoti.2018.09.005 · Zbl 1469.35201 · doi:10.1016/j.wavemoti.2018.09.005
[72] 10.1137/18M1225409 · Zbl 1440.60065 · doi:10.1137/18M1225409
[73] 10.1016/j.jcp.2019.05.027 · Zbl 1452.68171 · doi:10.1016/j.jcp.2019.05.027
[74] 10.1016/j.neucom.2022.08.030 · doi:10.1016/j.neucom.2022.08.030
[75] 10.3934/nhm.2023020 · Zbl 1531.65088 · doi:10.3934/nhm.2023020
[76] 10.1088/1402-4896/acd307 · doi:10.1088/1402-4896/acd307
[77] 10.1109/TENCON.2002.1181357 · doi:10.1109/TENCON.2002.1181357
[78] 10.1016/j.cma.2022.114823 · Zbl 1507.65217 · doi:10.1016/j.cma.2022.114823
[79] 10.1016/j.jcp.2020.109409 · Zbl 1436.65156 · doi:10.1016/j.jcp.2020.109409
[80] 10.1137/19M1260141 · Zbl 1440.60067 · doi:10.1137/19M1260141
[81] 10.1016/j.jcp.2019.07.048 · Zbl 1454.65008 · doi:10.1016/j.jcp.2019.07.048
[82] 10.1063/5.0067260 · Zbl 07871530 · doi:10.1063/5.0067260
[83] 10.1109/IWQoS.2018.8624183 · doi:10.1109/IWQoS.2018.8624183
[84] 10.1016/j.jcp.2020.109676 · Zbl 07507237 · doi:10.1016/j.jcp.2020.109676
[85] 10.1145/279232.279236 · Zbl 0912.65057 · doi:10.1145/279232.279236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.