×

Wave-packet behaviors of the defocusing nonlinear Schrödinger equation based on the modified physics-informed neural networks. (English) Zbl 07871530


MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
68Txx Artificial intelligence

Software:

LBFGS-B; DeepXDE
Full Text: DOI

References:

[1] Hasegawa, A.; Matsumoto, M., Optical Solitons in Fibers, 2003, Springer-Verlag: Springer-Verlag, Berlin
[2] Liu, W. M.; Wu, B.; Niu, Q., Nonlinear effects in interference of Bose-Einstein condensates, Phys. Rev. Lett., 84, 11, 2294, 2000 · doi:10.1103/PhysRevLett.84.2294
[3] Hasimoto, H.; Ono, H., Nonlinear modulation of gravity waves, J. Phys. Soc. Jpn., 33, 3, 805-811, 1972 · doi:10.1143/JPSJ.33.805
[4] Hefter, E. F., Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A, 32, 2, 1201, 1985 · doi:10.1103/PhysRevA.32.1201
[5] Mio, K.; Ogino, T.; Minami, K.; Takeda, S., Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Jpn., 41, 1, 265-271, 1976 · Zbl 1334.76181 · doi:10.1143/JPSJ.41.265
[6] Tan, B.; Liu, S., Collision interactions of solitons in a baroclinic atmosphere, J. Atmos. Sci., 52, 9, 1501-1512, 1995 · doi:10.1175/1520-0469(1995)052<1501:CIOSIA>2.0.CO;2
[7] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 2, 190-194, 1972 · doi:10.1007/BF00913182
[8] Randoux, S.; Suret, P.; Chabchoub, A.; Kibler, B.; El, G., Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments, Phys. Rev. E, 98, 2, 022219, 2018 · doi:10.1103/PhysRevE.98.022219
[9] Liu, L.; Tian, B.; Chai, H. P.; Yuan, Y. Q., Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber, Phys. Rev. E, 95, 3, 032202, 2017 · doi:10.1103/PhysRevE.95.032202
[10] Wang, L.; Zhang, J. H.; Wang, Z. Q.; Liu, C.; Li, M.; Qi, F. H.; Guo, R., Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation, Phys. Rev. E, 93, 1, 012214, 2016 · doi:10.1103/PhysRevE.93.012214
[11] Zakharov, V. E.; Shabat, A., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 1, 62, 1972
[12] Zakharov, V. E.; Shabat, A. B., Interaction between solitons in a stable medium, Sov. Phys. JETP, 37, 5, 823-828, 1973 · doi:10.1016/0002-9378(91)91172-S
[13] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform, 1981, Society for Industrial and Applied Mathematics · Zbl 0472.35002
[14] Newell, A. C., Solitons in Mathematics and Physics, 1985, Society for Industrial and Applied Mathematics · Zbl 0565.35003
[15] Hirota, R., Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, J. Math. Phys., 14, 7, 810-814, 1973 · Zbl 0261.76008 · doi:10.1063/1.1666400
[16] Bao, W., Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions, Methods Appl. Anal., 11, 3, 367-388, 2004 · Zbl 1090.65116 · doi:10.4310/MAA.2004.v11.n3.a8
[17] Bao, W.; Tang, Q.; Xu, Z., Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys., 235, 423-445, 2013 · Zbl 1291.35329 · doi:10.1016/j.jcp.2012.10.054
[18] Wang, D.; Xiao, A.; Yang, W., Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242, 670-681, 2013 · Zbl 1297.65100 · doi:10.1016/j.jcp.2013.02.037
[19] Xu, Y.; Shu, C. W., Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205, 1, 72-97, 2005 · Zbl 1072.65130 · doi:10.1016/j.jcp.2004.11.001
[20] Besse, C.; Bidégaray, B.; Descombes, S., Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40, 1, 26-40, 2002 · Zbl 1026.65073 · doi:10.1137/S0036142900381497
[21] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382-399, 2013 · Zbl 1349.65347 · doi:10.1016/j.jcp.2013.03.007
[22] Delfour, M.; Fortin, M.; Payr, G., Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys., 44, 2, 277-288, 1981 · Zbl 0477.65086 · doi:10.1016/0021-9991(81)90052-8
[23] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9, 987-1000, 1998 · doi:10.1109/72.712178
[24] Wu, K.; Xiu, D., Numerical aspects for approximating governing equations using data, J. Comput. Phys., 384, 200-221, 2019 · Zbl 1451.65008 · doi:10.1016/j.jcp.2019.01.030
[25] Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E., “DeepXDE: A deep learning library for solving differential equations,” arxiv:1907.04502 (2019). · Zbl 1459.65002
[26] Raissi, M.; Karniadakis, G. E., Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys., 357, 125-141, 2018 · Zbl 1381.68248 · doi:10.1016/j.jcp.2017.11.039
[27] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[28] Tripathy, R. K.; Bilionis, I.; Deep, U. Q., Learning deep neural network surrogate models for high dimensional uncertainty quantification, J. Comput. Phys., 375, 565-588, 2018 · Zbl 1419.68084 · doi:10.1016/j.jcp.2018.08.036
[29] Stein, M., Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 2, 143-151, 1987 · Zbl 0627.62010 · doi:10.1080/00401706.1987.10488205
[30] Pinkus, A., Approximation theory of the MLP model in neural networks, Acta Numer., 8, 1, 143-195, 1999 · Zbl 0959.68109 · doi:10.1017/S0962492900002919
[31] Da, K., “A method for stochastic optimization,” arxiv:1412.6980 (2014).
[32] Agrawal, G. P., Nonlinear Fiber Optics, 2000, Springer: Springer, Berlin · Zbl 1024.78514
[33] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208, 1995 · Zbl 0836.65080 · doi:10.1137/0916069
[34] Pu, J. C.; Li, J.; Chen, Y., Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints, Chin. Phys. B, 30, 060202, 2021 · doi:10.1088/1674-1056/abd7e3
[35] Wang, L.; Yan, Z., Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning, Phys. Lett. A, 404, 127408, 2021 · Zbl 07409914 · doi:10.1016/j.physleta.2021.127408
[36] Deift, P. and Zhou, X., Long-Time Behavior of the Non-Focusing Linear Schrödinger Equation—A Case Study, New Series: Lectures in Mathematical Sciences (University of Tokyo, 1994).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.