×

\(L^p\) decay rate for a nonlinear convection diffusion reaction equation in \(\mathbb{R}^n\). (English) Zbl 1464.35241

Summary: This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in \(\mathbb{R}^n\). Firstly, the global existence and uniqueness of classical solutions for small initial data are established. Then, we obtain the \(L^p\), \(2\leq p\leq+\infty\) decay rate of solutions. The approach is based on detailed analysis of the Green function of the linearized equation with the technique of long wave-short wave decomposition and the Fourier analysis.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35A09 Classical solutions to PDEs
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI

References:

[1] Adams, RA, Sobolev space (1975), New York: Academic Press, New York
[2] Deckelnick, K., Decay estimates for the compressible Navier-Stokes equations in unbounded domains, Math. Z., 209, 115-130 (1992) · Zbl 0752.35048 · doi:10.1007/BF02570825
[3] Deckelnick, K., L^2 decay for the compressible Navier-Stokes equations in unbounded domains, Comm. Partial Differential Equations, 18, 1445-1476 (1993) · Zbl 0798.35124 · doi:10.1080/03605309308820981
[4] Duan, RJ; Strain, RM, Optimal time decay of the Vlasov-Poisson-Boltzmann system in ℝ^3, Arch. Ration. Mech. Anal., 199, 291-328 (2011) · Zbl 1232.35169 · doi:10.1007/s00205-010-0318-6
[5] Duan, RJ; Strain, RM, Optimal large time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64, 1497-1546 (2011) · Zbl 1244.35010
[6] Deng, SJ; Wang, WK; Zhao, HL, Existence theory and L^p estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11, 4404-4414 (2010) · Zbl 1202.35138 · doi:10.1016/j.nonrwa.2010.05.024
[7] Escobedo, M.; Vazquez, J. L.; Zuazua, E., Asymptotic behaviour and source type solutions for a diffusion convection equation, Arch Rational Mech Anal., 124, 43-65 (1993) · Zbl 0807.35059 · doi:10.1007/BF00392203
[8] Escobedo, M.; Zuazua, E., Large time behaviour for convection diffusion equations in ℝ^n, J Funct Anal., 100, 119-161 (1991) · Zbl 0762.35011 · doi:10.1016/0022-1236(91)90105-E
[9] Gaya, UI; Abdullah, AH, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12 (2008) · doi:10.1016/j.jphotochemrev.2007.12.003
[10] Hosono, T.; Kawashima, S., Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci., 16, 1839-1859 (2006) · Zbl 1108.35014 · doi:10.1142/S021820250600173X
[11] Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, JM, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31, 145-157 (2001) · doi:10.1016/S0926-3373(00)00276-9
[12] Hoff, D.; Zumbrun, K., Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44, 603-676 (1995) · Zbl 0842.35076 · doi:10.1512/iumj.1995.44.2003
[13] Kawashima, S., Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydanamics (1983), Kyoto: Kyoyo University, Kyoto
[14] Kagei, Y.; Kobayashi, T., Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177, 231-330 (2005) · Zbl 1098.76062 · doi:10.1007/s00205-005-0365-6
[15] Laurencot, PH, Long time behavior for diffusion equations with fast convection, Ann. Mat. Pura. Appl., 175, 233-251 (1998) · Zbl 0965.35015 · doi:10.1007/BF01783685
[16] Laurencot, PH; Simondon, F., Large time behaviour for porous medium equations with convection, Proc Roy Soc Edinburgh, 128A, 315-336 (1998) · Zbl 0906.35050 · doi:10.1017/S0308210500012816
[17] Liu, M., Existence and decay of solutions for a generalized Boussinesq equation, Math. Appl., 4, 797-804 (2014) · Zbl 1324.35149
[18] Lu, YG; Koley, CKU; Lu, ZX, Decay rate for degenerate convection diffusion equations in both one and several space dimensions, Acta Math. Sci. Ser.B Engl. Ed., 35, 281-302 (2015) · Zbl 1340.35140 · doi:10.1016/S0252-9602(15)60001-7
[19] Liu, GW, The pointwise estimates of solutions for a nonlinear convection diffusion reaction equation, Acta Math. Sci. Ser. B Engl. Ed., 37, 79-96 (2017) · Zbl 1389.35202 · doi:10.1016/S0252-9602(16)30117-5
[20] Li, DQ; Chen, YM, Nonlinear evolution function (1989), Beijing: Publication of Science, Beijing
[21] Liao, J.; Wang, WK; Yang, T., L^p convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247, 303-329 (2009) · Zbl 1170.35544 · doi:10.1016/j.jde.2009.03.011
[22] Matsumura, A., On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12, 160-189 (1976) · Zbl 0356.35008
[23] Matsumura, A., An energy method for the equations of motion of compressible viscous and heat-conductive fluids, 1-16 (1981), Madison, WI: University of Wisconsin-Madison, Madison, WI
[24] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55, 337-342 (1979) · Zbl 0447.76053 · doi:10.3792/pjaa.55.337
[25] Shizuta, Y.; Kawashima, S., Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14, 249-275 (1985) · Zbl 0587.35046 · doi:10.14492/hokmj/1381757663
[26] Turchi, CS; Ollis, DF, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis, 122, 178-192 (1990) · doi:10.1016/0021-9517(90)90269-P
[27] Ukai, S.; Yang, T.; Zhao, HJ, Convergence rate to stationary solutions for Boltzmann equation with external force, Chin. Ann. Math. Ser. B, 27, 363-378 (2006) · Zbl 1151.76571 · doi:10.1007/s11401-005-0199-4
[28] Xu, H. M.; Wang, J., Pointwise estimation of one dimensional convection diffusion equation, Wuhan Univ. J. Nat. Sci., 60, 129-131 (2014) · Zbl 1313.35180
[29] Yang, T.; Yu, H., Optimal convergence rates of classical solutions for Vlasov-Possion-Boltzmann system, Comm. Math. Phys., 301, 319-355 (2011) · Zbl 1233.35040 · doi:10.1007/s00220-010-1142-4
[30] Yang, T.; Zhao, HJ, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268, 569-605 (2006) · Zbl 1129.35023 · doi:10.1007/s00220-006-0103-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.