×

Remove the salt and pepper noise based on the high order total variation and the nuclear norm regularization. (English) Zbl 1510.94022

Summary: This paper proposes a new model to remove the salt and pepper (SAP) noise problem. In the proposed method, we combine the high order total variation regularization with the nuclear norm regularization in order to keep details and structures of the restored images. Since the proposed model is convex and separable, the classic alternating direction method of multipliers can be employed to solve it by introducing some auxiliary variables to transform the original problem into the saddle point problem. Theoretically, we establish the convergence analysis of the proposed numerical algorithm. Final experimental comparisons are provided to show the satisfactory performance of the proposed model, which outperforms other related competitive methods in both the SNR and the SSIM.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
90C25 Convex programming
Full Text: DOI

References:

[1] Benning, M.; Burger, M., Modern regularization methods for inverse problems, Acta Numer., 27, 1-111 (2018) · Zbl 1431.65080
[2] Bottou, L.; Curtis, F.; Nocedal, J., Optimization methods for large-scale machine learning, SIAM Rev., 6, 2, 223-311 (2018) · Zbl 1397.65085
[3] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 3, 492-526 (2010) · Zbl 1195.49025
[4] Brinkmann, E.; Burger, M.; Grah, J., Unified models for second-order TV-type regularisation in imaging: a new perspective based on vector operators, J. Math. Imaging Vis., 61, 5, 571-601 (2019) · Zbl 1494.94004
[5] Cai, J.; Candés, E.; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20, 4, 1956-1982 (2010) · Zbl 1201.90155
[6] Cai, X.; Han, D., \( O ( 1 / t )\) complexity analysis of the generalized alternating direction method of multipliers, Sci. China Math., 62, 4, 795-808 (2019) · Zbl 1431.65083
[7] Calatroni, L.; Lanza, A.; Pragliola, M.; Sgallari, F., A flexible space-variant anisotropic regularization for image restoration with automated parameter selection, SIAM J. Imaging Sci., 12, 2, 1001-1037 (2019) · Zbl 1524.94009
[8] Chan, T.; Esedoglu, S., Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65, 5, 1817-1837 (2005) · Zbl 1096.94004
[9] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2006) · Zbl 0968.68175
[10] Chatterjee, P.; Milanfar, P., Is denoising dead?, IEEE Trans. Image Process., 19, 4, 895-911 (2010) · Zbl 1371.94082
[11] Ding, M.; Huang, T. Z.; Ji, T. Y., Low-rank tensor completion using matrix factorization based on tensor train rank and total variation, J. Sci. Comput., 81, 941-964 (2019) · Zbl 1466.94005
[12] Duval, V.; Aujol, J.; Gousseau, Y., The TVL1 model: a geometric point of view, Multiscale Model. Simul., 8, 1, 154-189 (2009) · Zbl 1187.94010
[13] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2, 1, 17-40 (1976) · Zbl 0352.65034
[14] Glowinski, R.; Pan, T.; Tai, X., Some facts about operator-splitting and alternating direction methods, Splitting Methods in Communication, Imaging, Science, and Engineering, 19-94 (2016) · Zbl 1372.65205
[15] Goyal, G., Improved image denoising filter using low rank and total variation, Global J. Comput. Sci. Technol., 16, 1, 13-15 (2016)
[16] Holt, K., Total nuclear variation and jacobian extensions of total variation for vector fields, IEEE Trans. Image Process., 23, 9, 3975-3989 (2014) · Zbl 1374.94140
[17] Hwang, H.; Hadded, R., Adaptive median filter:new algorithms and results, IEEE Trans. Image Process., 4, 4, 499-502 (1995)
[18] Jhy, A.; Xlz, A.; Thm, B., Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, J. Comput. Appl. Math., 363, 124-144 (2020) · Zbl 1429.94027
[19] R. Kongskov, Y. Dong, Directional total generalized variation regularization for impulse noise removal, Scale Space and Variational Methods in Computer Vision, 2017n, 221-231 · Zbl 1489.94013
[20] Larsson, V.; Olsson, C., Convex low rank approximation, Int. J. Comput. Vis., 120, 2, 194-214 (2016) · Zbl 1398.68586
[21] Liu, G.; Huang, T.; Liu, J., High-order TVL1-based images restoration and spatially adapted regularization parameter selection, Comput. Math. Appl., 67, 2015-2026 (2014) · Zbl 1366.94058
[22] Lu, C.; Tang, J.; Lin, Z., Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm, IEEE Trans. Image Process., 25, 2, 829-839 (2016) · Zbl 1408.94866
[23] Lysaker, M.; Lundervold, A.; Tai, X., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 12, 1579-1590 (2003) · Zbl 1286.94020
[24] Milanfar, P., A tour of modern image filtering: new insights and methods, both practical and theoretical, IEEE Signal Process. Mag., 30, 1, 106-128 (2013)
[25] Moeller, M.; Cremers, D., Image denoising-old and new, Denoising of Photographic Images and Video, 63-91 (2018)
[26] Nikolova, M., A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20, 1-2, 99-120 (2004) · Zbl 1366.94065
[27] Papyan, V.; Elad, M., Multi-scale patch-based image restoration, IEEE Trans. Image Process., 25, 1, 249-261 (2016) · Zbl 1408.94526
[28] Romano, Y.; Elad, M.; Milanfar, P., The little engine that could: regularization by denoising (RED), SIAM J. Imaging Sci., 10, 4, 1804-1844 (2017) · Zbl 1401.62101
[29] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[30] Scherzer, O., Handbook of Mathematical Methods in Imaging (2015), Springer: Springer New York · Zbl 1322.68001
[31] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19, 6, S165-S187 (2003) · Zbl 1043.94512
[32] Toh, K.; Isa, N., Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction, IEEE Signal Process. Lett., 17, 3, 281-284 (2010)
[33] Wang, Y.; Yin, W.; Zeng, J., Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78, 1, 29-63 (2019) · Zbl 1462.65072
[34] Yair, N.; Michaeli, T., Multi-scale weighted nuclear norm image restoration, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3165-3173 (2018)
[35] You, Y.; Kaveh, M., Fourth-order partial differential equation for noise removal, IEEE Trans. Image Process., 9, 10, 1723-1730 (2000) · Zbl 0962.94011
[36] Zhang, X.; Ng, M., A fast algorithm for solving linear inverse problems with uniform noise removal, J. Sci. Comput., 78, 2, 1214-1240 (2019) · Zbl 1416.65108
[37] Zha, Z.; Zhang, X.; Wu, Y.; Wang, Q.; Liu, X.; Tang, L.; Yuan, X., Non-convex weighted \(\ell p\) nuclear norm based ADMM framework for image restoration, Neurocomputing, 311, 15, 209-224 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.